Skip to main content

BigBang is a toolkit for studying communications data from collaborative projects. It currently supports analyzing mailing lists from Sourceforge, Mailman, ListServ, or .mbox files.

Project description


BigBang is a toolkit for studying communications data from collaborative projects. It currently supports analyzing mailing lists from Sourceforge, Mailman, ListServ (version 16.5 and 17), Pipermail (version 0.09), Hypermail (version 2.4.0) or .mbox files.

Complete documentation for BigBang can be found on ReadTheDocs.

DOI codecov Gitter


You can use Anaconda. This will also install the conda package management system, which you can use to complete installation.

Install Anaconda, with Python version 3.*.

If you choose not to use Anaconda, you may run into issues with versioning in Python. Add the Conda installation directory to your path during installation.

You also need need to have Git and Pip (for Python3) installed.

Run the following commands:

git clone
cd bigbang
python3 develop --user

This video tutorial shows how to install BigBang. BigBang Video Tutorial


There are serveral Jupyter notebooks in the examples/ directory of this repository. To open them and begin exploring, run the following commands in the root directory of this repository:

source activate bigbang
ipython notebook examples/

BigBang contains scripts that make it easy to collect data from a variety of sources. For example, to collect data from an open mailing list archive hosted by Mailman, use:

python3 bin/ -u

You can also give this command a file with several urls, one per line. One of these is provided in the examples/ directory.

python3 bin/ -f examples/urls.txt

Once the data has been collected, BigBang has functions to support analysis.

You can read more about data source supported by BigBang in the documentation.


Unit tests

To run the automated unit tests, use: pytest tests/unit.

Our current goal is code coverage of 60%. Add new unit tests within tests/unit. Unit tests run quickly, without relying on network requests.


Docstrings are preferred, so that auto-generated web-based documentation will be possible (#412). You can follow the Google style guide for docstrings.


Run pre-commit install to get automated usage of black, flake8 and isort to all Python code files for consistent formatting across developers. We try to follow the PEP8 style guide.


If you are interested in participating in BigBang development or would like support from the core development team, please subscribe to the bigbang-dev mailing list and let us know your suggestions, questions, requests and comments. A development chatroom is also available.

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make participation in our project and our community a harassment-free experience for everyone.


If the installation described above does not work, you can try to run the installation with Pip:

git clone
# optionally create a new virtualenv here
pip3 install -r requirements.txt
python3 develop --user


These academic publications use BigBang as part of their methods:


MIT, see LICENSE for its text. This license may be changed at any time according to the principles of the project Governance.


This project is funded by:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bigbang-py-0.4.4.tar.gz (22.7 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page