Skip to main content

BigQuery Foreign Data Wrapper for PostgreSQL

Project description

bigquery\_fdw: BigQuery Foreign Data Wrapper for PostgreSQL
===========================================================

bigquery\_fdw is a BigQuery foreign data wrapper for PostgreSQL using
`Multicorn <https://github.com/Kozea/Multicorn>`__.

It allows to write queries in PostgreSQL SQL syntax using a foreign
table. It supports most of BigQuery's `data
types <docs/data_types.md>`__ and `operators <docs/operators.md>`__.

Features and limitations
------------------------

- Table partitioning is supported. You can use partitions in your SQL
queries.
- Queries are parameterized when sent to BigQuery
- BigQuery's standard SQL support (legacy SQL is not supported)
- Authentication works with a "Service Account" Json private key

Requirements
------------

- PostgreSQL >= 9.5
- Python 3

Dependencies
------------

Dependencies required to install bigquery\_fdw:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ``postgresql-server-dev-X.Y``
- ``python3-pip``
- ``python3-dev``
- ``make``
- ``gcc``

Major dependencies installed automatically during the installation process:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- `Google Cloud
BigQuery <https://pypi.org/project/google-cloud-bigquery/>`__
- `Multicorn <https://github.com/Kozea/Multicorn>`__

Installation
------------

::

# Install `setuptools` if necessary
pip3 install --upgrade setuptools

# Install Multicorn
git clone git://github.com/Kozea/Multicorn.git
export PYTHON_OVERRIDE=python3
make && make install

# Install bigquery_fdw
pip3 install bigquery-fdw

Usage
-----

We recommend testing the `BigQuery client
connectivity <docs/test_client.md>`__ before trying to use the FDW.

With ``psql``:

.. code:: sql

CREATE EXTENSION multicorn;

CREATE SERVER bigquery_srv FOREIGN DATA WRAPPER multicorn
OPTIONS (
wrapper 'bigquery_fdw.fdw.ConstantForeignDataWrapper'
);

CREATE FOREIGN TABLE my_bigquery_table (
column1 text,
column2 bigint
) SERVER bigquery_srv
OPTIONS (
fdw_dataset 'my_dataset',
fdw_table 'my_table',
fdw_key '/opt/bigquery_fdw/user.json'
);

Options
-------

List of options implemented in ``CREATE FOREIGN TABLE`` syntax:

+--------+-------+-------+
| Option | Defau | Descr |
| | lt | iptio |
| | | n |
+========+=======+=======+
| ``fdw_ | - | BigQu |
| datase | | ery |
| t`` | | datas |
| | | et |
| | | name |
+--------+-------+-------+
| ``fdw_ | - | BigQu |
| table` | | ery |
| ` | | table |
| | | name |
+--------+-------+-------+
| ``fdw_ | - | Path |
| key`` | | to |
| | | priva |
| | | te |
| | | Json |
| | | key |
| | | (See |
| | | `Key |
| | | stora |
| | | ge |
| | | recom |
| | | menda |
| | | tions |
| | | <doc |
| | | s/key |
| | | _stor |
| | | age.m |
| | | d>`__ |
| | | ) |
+--------+-------+-------+
| ``fdw_ | ``'fa | Set |
| verbos | lse'` | to |
| e`` | ` | ``'tr |
| | | ue'`` |
| | | to |
| | | outpu |
| | | t |
| | | debug |
| | | infor |
| | | matio |
| | | n |
| | | in |
| | | Postr |
| | | geSQL |
| | | 's |
| | | logs |
+--------+-------+-------+
| ``fdw_ | ``'st | BigQu |
| sql_di | andar | ery |
| alect` | d'`` | SQL |
| ` | | diale |
| | | ct. |
| | | Curre |
| | | ntly |
| | | only |
| | | ``sta |
| | | ndard |
| | | `` |
| | | is |
| | | suppo |
| | | rted. |
+--------+-------+-------+

Table partitioning
------------------

BigQuery **table partitioning is supported**. When partitioning a table,
BigQuery creates a pseudo column called ``_PARTITIONTIME``.

To use partitions, you need to add a column ``partition_date`` with the
type ``date`` in the foreign table definition, for example:

.. code:: sql

CREATE FOREIGN TABLE my_bigquery_table (
column1 text,
column2 bigint,
partition_date date -- <-- partition!
) SERVER bigquery_srv
OPTIONS (
fdw_dataset 'my_dataset',
fdw_table 'my_table',
fdw_key '/opt/bigquery_fdw/user.json'
);

You can then use the partition in the ``WHERE`` clause:

.. code:: sql

SELECT column1, column2
FROM my_bigquery_table
WHERE column1 = 'abc' AND partition_date = '2017-12-01'

More documentation
------------------

See `/docs </docs>`__.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bigquery-fdw-1.0.1.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

bigquery_fdw-1.0.1-py2.py3-none-any.whl (10.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file bigquery-fdw-1.0.1.tar.gz.

File metadata

File hashes

Hashes for bigquery-fdw-1.0.1.tar.gz
Algorithm Hash digest
SHA256 66c13f2d96a26cad242541ed378b0b99a37bc515163c05494061284112832dd9
MD5 a5422843c0b2985048d3235ef20e2ec9
BLAKE2b-256 685fed2ee5c8c62ac18ec115108034fe9f75a7cf9295a29efda72717495a2702

See more details on using hashes here.

File details

Details for the file bigquery_fdw-1.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for bigquery_fdw-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0c40b1b2d3589aecf045107dee5b208e27d70ec4beee8d96ad89f47eae7a56e9
MD5 90ee26300fed6ed717288a2b7aee77fb
BLAKE2b-256 615acabdb76a5217db4cf34c89c0aaac4a94ef81ab04bec347275329f2192d31

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page