Export Large Results from BigQuery to Google Cloud Storage
Project description
# BigQuery-GCS
[![Build Status](https://travis-ci.org/pirsquare/BigQuery-GCS.svg?branch=master)](https://travis-ci.org/pirsquare/BigQuery-GCS)
Dealing with large query results isn't so [straightforward in BigQuery](https://cloud.google.com/bigquery/querying-data#largequeryresults) . This library provides wrapper to help you execute query with large results and export it to Goolge Cloud Storage for ease of accessibility.
1. Run your query.
2. Output results to a temporary table.
3. Export temporary table data to GCS.
4. Delete temporary table.
## Installation
pip install bigquery-gcs
## Examples
```python
from bigquery_gcs import Exporter
config = {
'GCS_ACCESS_KEY': "YOUR_GCS_ACCESS_KEY",
'GCS_SECRET_KEY': "YOUR_GCS_SECRET_KEY",
'GCS_BUCKET_NAME': "YOUR_GCS_BUCKET_NAME",
'BQ_PROJECT_ID': "YOUR_BQ_PROJECT_ID",
'BQ_SERVICE_ACCOUNT': "YOUR_BQ_SERVICE_ACCOUNT",
'BQ_PRIVATE_KEY_PATH': "YOUR_BQ_PRIVATE_KEY_PATH",
'BQ_DEFAULT_QUERY_TIMEOUT': 86400, # 24 hours
'BQ_DEFAULT_EXPORT_TIMEOUT': 86400, # 24 hours
}
exporter = Exporter(config)
query = "SELECT word FROM [publicdata:samples.shakespeare] LIMIT 1000"
dataset_temp = "temp"
table_temp = "shakespeare_word"
folder_name = "shakespeare" # This is your GCS folder to store result files
file_name = "shakespeare_word" # Name for exported file in GCS
# This will run query and export results to GCS
exporter.query_and_export(query, dataset_temp, table_temp, folder_name, file_name)
```
[![Build Status](https://travis-ci.org/pirsquare/BigQuery-GCS.svg?branch=master)](https://travis-ci.org/pirsquare/BigQuery-GCS)
Dealing with large query results isn't so [straightforward in BigQuery](https://cloud.google.com/bigquery/querying-data#largequeryresults) . This library provides wrapper to help you execute query with large results and export it to Goolge Cloud Storage for ease of accessibility.
1. Run your query.
2. Output results to a temporary table.
3. Export temporary table data to GCS.
4. Delete temporary table.
## Installation
pip install bigquery-gcs
## Examples
```python
from bigquery_gcs import Exporter
config = {
'GCS_ACCESS_KEY': "YOUR_GCS_ACCESS_KEY",
'GCS_SECRET_KEY': "YOUR_GCS_SECRET_KEY",
'GCS_BUCKET_NAME': "YOUR_GCS_BUCKET_NAME",
'BQ_PROJECT_ID': "YOUR_BQ_PROJECT_ID",
'BQ_SERVICE_ACCOUNT': "YOUR_BQ_SERVICE_ACCOUNT",
'BQ_PRIVATE_KEY_PATH': "YOUR_BQ_PRIVATE_KEY_PATH",
'BQ_DEFAULT_QUERY_TIMEOUT': 86400, # 24 hours
'BQ_DEFAULT_EXPORT_TIMEOUT': 86400, # 24 hours
}
exporter = Exporter(config)
query = "SELECT word FROM [publicdata:samples.shakespeare] LIMIT 1000"
dataset_temp = "temp"
table_temp = "shakespeare_word"
folder_name = "shakespeare" # This is your GCS folder to store result files
file_name = "shakespeare_word" # Name for exported file in GCS
# This will run query and export results to GCS
exporter.query_and_export(query, dataset_temp, table_temp, folder_name, file_name)
```
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
BigQuery-GCS-0.0.8.zip
(11.2 kB
view details)
File details
Details for the file BigQuery-GCS-0.0.8.zip
.
File metadata
- Download URL: BigQuery-GCS-0.0.8.zip
- Upload date:
- Size: 11.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3073ecc0d67693c39cace6c97c4f00153db7aa5bc1f78af4341002ac23c76577 |
|
MD5 | 392a5948adb9ec34f939c24fe17a5d8f |
|
BLAKE2b-256 | 4d124370b176e1a4809c8ee2d2885f201fb2a5f4a8255870031603f0def71408 |