Skip to main content

Query Layer for Google Cloud Bigtable

Project description

BigtableQL

BigtableQL provides a SQL Query Layer for Google Cloud Bigtable.

Use Cases

Cloud Bigtable is Google's fully managed NoSQL Big Data database service. Each table contains rows and columns. Each row/column intersection can contain multiple cells. Each cell contains a unique timestamped version of the data for that row and column. Thus Bigtable is often used to store time series data.

BigtableQL provides a SQL query layer to run aggregation query on Bigtable.

Quick Start

pip install bigtableql

Using the weather balloon example data shown in Single-timestamp unserialized schema design

Row key                         pressure    temperature humidity    altitude
us-west2#3698#2021-03-05-1200   94558       9.6         61          612
us-west2#3698#2021-03-05-1201   94122       9.7         62          611
us-west2#3698#2021-03-05-1202   95992       9.5         58          602
us-west2#3698#2021-03-05-1203   96025       9.5         66          598
us-west2#3698#2021-03-05-1204   96021       9.6         63          624

After initialize the client

from bigtableql.client import Client
# config follows offical python bigtable client
client = Client(config)

client.register_table(
    "weather_balloons",
    instance_id="INSTANCE_ID",
    column_families={
        "measurements": {
            "only_read_latest": True,
            "columns": {
                "pressure": int,
                "temperature": str,
                "humidity": int,
                "altitude": int
            }
        }
    }
)

we are able to calculate average pressure of the period by

client.query("measurements", """
SELECT avg(pressure) FROM weather_balloons
WHERE
  "_row_key" BETWEEN 'us-west2#3698#2021-03-05-1200' AND 'us-west2#3698#2021-03-05-1204'
""")

Or with row key decomposition

client.register_table(
    xxx,
    row_key_identifiers=["location", "balloon_id", "event_minute"],
    row_key_separator="#"
)

client.query("measurements", """
SELECT balloon_id, avg(pressure) FROM weather_balloons
WHERE
  location = 'us-west2'
  AND balloon_id IN ('3698', '3700')
  AND event_minute BETWEEN '2021-03-05-1200' AND '2021-03-05-1204'
GROUP BY 1
""")

The output of query is list of pyarrow.RecordBatch. It can be easily convert to python dictionary (to_pydict) and pandas dataframe (to_pandas).

Group by Time

Each cell in Bigtable have a timestamp. SELECT "_timestamp" will return a float number, represent seconds since Unix epoch. Following is an example to select 5 minutes interval

SELECT to_timestamp_seconds(cast(floor("_timestamp" / 600) * 600 as bigint)) as interval

Alternative

  1. Google BigQuery external data source

However, as of 2022-01, it

  • only supports "us-central1" and "europe-west1" region
  • only supports query with "rowkey"
  • by default can run up to 4 concurrent queries against Bigtable external data source

Roadmap

SQL

  • ✅ Insert Into
  • ✅ Select *
  • ✅ Select column(s)
  • ✅ Filter (WHERE): "=", "IN", "BETWEEN", ">", ">=", "<", "<="
  • ✅ GROUP BY
  • ✅ ORDER BY
  • ✅ HAVING
  • ✅ LIMIT
  • ✅ Aggregate (e.g. avg, sum, count)
  • ✅ AND
  • ✅ Alias
  • ✅ Cast
  • ✅ Common Math Functions
  • Common Date/Time Functions
  • OR ???
  • Join ???

General

  • ✅ Partition Pruning
  • ✅ Projection pushdown
  • ✅ Predicate push down (Value range)
  • Limit Pushdown ???

Limitation

  • for row key encoding, only string is supported
  • for single/composite row key, identifiers supports "=" and "IN". Additionally, last identifier also supports "BETWEEN".
  • for qualifiers, only string and integer (64bit BigEndian encoding) value are supported
  • subqueries and common table expressions are not supported

Technical Details

BigtableQL depends on

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BigtableQL-0.1.9.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

BigtableQL-0.1.9-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file BigtableQL-0.1.9.tar.gz.

File metadata

  • Download URL: BigtableQL-0.1.9.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.12 Linux/5.11.0-1028-azure

File hashes

Hashes for BigtableQL-0.1.9.tar.gz
Algorithm Hash digest
SHA256 c585f7561590cfe7374c39f5bcefe9f0f28c431be7c86ce17d32b3aa01430afd
MD5 5b814f7490e335d9ee47427b845443c9
BLAKE2b-256 b49b8fcf6541b411c9cbe9f84c0ac3c91fe8de95efa8a945bb952886d4bcc420

See more details on using hashes here.

File details

Details for the file BigtableQL-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: BigtableQL-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.12 Linux/5.11.0-1028-azure

File hashes

Hashes for BigtableQL-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 e958d4aae79e5e18d49ffce134de48b771be38511f7f3d2fe9c67d732a568c38
MD5 97f6a9d4165ef9c1fc35a873507e3b49
BLAKE2b-256 25c2563a2fa33dc194adc58bdb25072e13d2ea67acefd992501606d7a9af4651

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page