Testing GR analysis pipelines to use with Bilby
Project description
Bilby_TGR
This is the Bilby Testing General Relativity (TGR) package. It is used to develop and share analysis done by the LVC TGR group building on the Bilby stochastic sampling package.
Installation
To get started developing and using bilby_tgr
, first clone the repository
$ git clone git@git.ligo.org:lscsoft/bilby_tgr.git
To install, enter the cloned directory and run
$ pip install .
To check that you have installed it correctly, open an python prompt and run
>>> import bilby_tgr
>>> bilby_tgr.tiger.source.lal_binary_black_hole
If this returns the function, then you have it installed! You can now add new functions to the sources and access them in the same way.
Running using bilby_pipe
Once you have installed bilby_tgr
, you can use the bilby_pipe
package to run stoachastic sampling. For help getting installed and setup with
bilby_pipe
itself, see the documentation.
Here, we give an example ini file. Notice that the frequency-domain-source-model
is pointing to the bilby_tgr.tiger.source.lal_binary_black_hole
function. You can replace this with any new function you care to define in the
bilby_tgr
package.
trigger-time = 1186741861.5
detectors = [H1, L1, V1]
channel-dict = {H1:DCH-CLEAN_STRAIN_C02, L1:DCH-CLEAN_STRAIN_C02, V1:Hrec_hoft_V1O2Repro2A_16384Hz}
prior_file = 4s.prior
time-marginalization=False
distance-marginalization=True
phase-marginalization=True
create-plots=True
local-generation = True
psd-dict = {H1:BayesWave_median_PSD_H1.dat, L1:BayesWave_median_PSD_L1.dat, V1:BayesWave_median_PSD_V1.dat}
label = GW170814
outdir = dalpha_2
accounting = ligo.dev.o3.cbc.pe.lalinference
duration = 4
coherence-test = False
maximum-frequency=1024
minimum-frequency=20
sampling-frequency=2048
reference-frequency = 20
waveform-approximant = IMRPhenomPv2
frequency-domain-source-model = bilby_tgr.source.lal_binary_black_hole_TIGER
calibration-model=CubicSpline
spline-calibration-envelope-dict = {H1:GWTC1_GW170814_H_CalEnv.txt, L1:GWTC1_GW170814_L_CalEnv.txt, V1:GWTC1_GW170814_V_CalEnv.txt}
spline_calibration-nodes = 10
deltaT = 0.2
sampler = dynesty
sampler-kwargs = {nlive: 1000, nact=50}
n-parallel = 4
transfer-files = False
The other thing you need is a prior file (4s.prior in the above ini). This will be a standard CBC prior, plus any new parameters.
chirp_mass = UniformInComponentsChirpMass(name="chirp_mass", minimum=12.299703, maximum=45, unit='$M_{\\odot}$')
mass_ratio = UniformInComponentsMassRatio(name="mass_ratio", minimum=0.125, maximum=1)
mass_1 = Constraint(name="mass_1", minimum=1.001398, maximum=1000)
mass_2 = Constraint(name="mass_2", minimum=1.001398, maximum=1000)
a_1 = Uniform(name="a_1", minimum=0, maximum=0.88)
a_2 = Uniform(name="a_2", minimum=0, maximum=0.88)
tilt_1 = Sine(name="tilt_1")
tilt_2 = Sine(name="tilt_2")
phi_12 = Uniform(name="phi_12", minimum=0, maximum=2 * np.pi, boundary="periodic")
phi_jl = Uniform(name="phi_jl", minimum=0, maximum=2 * np.pi, boundary="periodic")
luminosity_distance = bilby.gw.prior.UniformSourceFrame(name="luminosity_distance", minimum=1e2, maximum=5e3, unit="Mpc")
dec = Cosine(name="dec")
ra = Uniform(name="ra", minimum=0, maximum=2 * np.pi, boundary="periodic")
theta_jn = Sine(name="theta_jn")
psi = Uniform(name="psi", minimum=0, maximum=np.pi, boundary="periodic")
phase = Uniform(name="phase", minimum=0, maximum=2 * np.pi, boundary="periodic")
dchi_0 = DeltaFunction(0.)
dchi_1 = DeltaFunction(0.)
dchi_2 = DeltaFunction(0.)
dchi_3 = DeltaFunction(0.)
dchi_4 = DeltaFunction(0.)
dchi_5l = DeltaFunction(0.)
dchi_6 = DeltaFunction(0.)
dchi_6l = DeltaFunction(0.)
dchi_7 = DeltaFunction(0.)
dbeta_2 = DeltaFunction(0.)
dbeta_3 = DeltaFunction(0.)
dalpha_2 = Uniform(minimum=-10, maximum=10, latex_label="$\\delta \\alpha_2$")
dalpha_3 = DeltaFunction(0.)
dalpha_4 = DeltaFunction(0.)
dalpha_5 = DeltaFunction(0.)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bilby_tgr-0.1.tar.gz
.
File metadata
- Download URL: bilby_tgr-0.1.tar.gz
- Upload date:
- Size: 48.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3c1fe9146111ed6d6da1110d332d311d55b2d4cf311aa18849732cb886f0a27 |
|
MD5 | 3f89bb62f94967e417ebd494aecb572b |
|
BLAKE2b-256 | 4e4efca2e88112f6dc4c9d31b43ef9f7b019591b5f928d95169c62e0bedd22d5 |
File details
Details for the file bilby_tgr-0.1-py3-none-any.whl
.
File metadata
- Download URL: bilby_tgr-0.1-py3-none-any.whl
- Upload date:
- Size: 39.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a8c53df32f6b6ddafd64ec632d9c262f1c5aa76771486f69d3f6536c2d3d48a |
|
MD5 | 453be07007a67ae15ead8a52ae0069f3 |
|
BLAKE2b-256 | 9e701236c1c3b863709b1d0b333bcad5b166d82c30851b4f0b9e7ca600b57bc8 |