Skip to main content

Package that makes it a bit easier to visualize and analyse Marketing Mix Models

Project description

bimmm

The bimmm is a package to analyse MMM models and visualize them

Installation

Use the package manager pip to install bimmm.

pip install bimmm

1. Usage Decomposition for logistic regressions over time

# import modules
import pandas as pd
import numpy as np
from bimmm.analyse_mmm_models import mmm, s_curve, decay
import ssl
import statsmodels.formula.api as smf
import plotly.io as pio
pio.renderers.default = "browser"
import warnings
warnings.filterwarnings("ignore")


# Get some example data (you might need to run ssl._create_default_https_context = ssl._create_unverified_context:
ssl._create_default_https_context = ssl._create_unverified_context
url = 'https://raw.githubusercontent.com/SimonTeg/nlodatascience/master/sales_vs_media.csv'
df_example = pd.read_csv(url)
# make a dataset for the historical data with the sales, and one to forecast the sales
df_train = df_example.iloc[:26]
df_forecast = df_example.iloc[26:]

# Make your model
formule = 'sales ~ s_curve(decay(tv, 0.3), 3) + s_curve(decay(radio, 0.2), 7) + jackpot + jan + apr + dec + ' \
          'sunday_near_drawing + event + competitor + consumer_trust'
model = smf.ols(formula=formule, data=df_train)

# mmm object maken
analyse_model = mmm(model=model, var_date=df_train.maand_jaar, df=df_train)

# Actual vs fit
analyse_model.actual_vs_fit_graph().show()

# Decompositie
analyse_model.decomposition_graph().show()
analyse_model.decompositie_sum()

# Kosten van de kanalen waarvan je de ROI wilt weten
media_dict = {'tv': 10, 'radio': 5}
analyse_model.roi(media_dict, 'sales')

# Model results
analyse_model.model_characteristics()
analyse_model.VIF()

# Analyse for adding variables
analyse_model.select_n_largest_outliers(5)
analyse_model.check_variables_to_add()

License

Copyright (c) 2023 Rumiko Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bimmm-0.0.3.tar.gz (9.7 kB view details)

Uploaded Source

File details

Details for the file bimmm-0.0.3.tar.gz.

File metadata

  • Download URL: bimmm-0.0.3.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for bimmm-0.0.3.tar.gz
Algorithm Hash digest
SHA256 05ba05cd0c432c0fbc629378a70993c242a1f6b29c56870d246db437b4d89276
MD5 3679833f06ff280779e3a9c8e26b5904
BLAKE2b-256 df7adad8b3f9e1574966f297f7c81c6d7d3a7c3f28a427afbadd8e86f4861085

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page