Skip to main content

Binonymizer is a tool in Python that aims at tagging personal data in a parallel corpus.

Project description

binonymizer

Binonymizer is a tool in Python that aims at tagging personal data1 in a parallel corpus.

For example, for a input like:

URL1  URL2  My name is Marta and my email is fake@email.com    Mi nombre es Marta y mi email es fake@email.com

Binonymizer's output will be:

URL1 URL2 My name is <entity class="PER">Marta</entity> and my email is <entity class="EMAIL">fake@email.com</entity> Mi nombre es <entity class="PER">Marta</entity> y mi email es <entity class="EMAIL">fake@email.com</entity>

Detectable entity tipes

Currently, the Binonymizer is able to detect and tag the following types of entities:

  • PER: person names
  • ORG: organism and company names
  • EMAIL: email addresses
  • PHONE: phone numbers
  • ADDRESS: addresses
  • ID: personal card IDs (such as spanish DNIs)
  • MISC: other personal data, or when the type it's uncertain
  • OTHER: other

Installation & Requirements

Binonymizer works with Python 3.6, and can be installed with pip:

python3.6 -m pip install binonymizer

After installation, two binary files (binonymizer and binonymizer-lite) will be located in your python/installation/prefix/bin directory.

Language-dependant packages and models are automatically downloaded and installed on runtime, if needed.

Extra instructions for basque

In case you plan to binonymize basque data, you need to download binonymizer from github, and run the following steps:

cd binonymizer
git submodule sync
git submodule update --init --recursive --remote
cd prompsit_python_bindings
python3.6 setup.py install

Please note that you need to have access to Prompsit's private repository. Contact us if you need further details.

Usage

Binonymizer can be run with:

binonymizer [-h] --format {tmx,cols} [--tmp_dir TMP_DIR]
                     [-b BLOCK_SIZE] [-p PROCESSES] [-q] [--debug]
                     [--logfile LOGFILE] [-v]
                     input [output] srclang trglang

Parameters

  • positional arguments:
    • input: File to be anonymized (See format below)
    • output: File with anonymization annotations (default: standard output)
    • srclang: Source language code of the input
    • trglang: Target language code of the input
  • optional arguments:
    • -h, --help: show this help message and exit
  • Mandatory:
    • --format {tmx,cols}: Input file format. Values: cols, tmx ("cols" format: URL1 URL2 SOURCE_SENTENCE TARGET_SENTENCE [extra columns] tab-separated)
  • Optional:
    • --tmp_dir TMP_DIR: Temporary directory where creating the temporary files of this program (default: default system temp dir, defined by the environment variable TMPDIR in Unix)
    • -b BLOCK_SIZE, --block_size BLOCK_SIZE: Sentence pairs per block (default: 10000)
    • -p PROCESSES, --processes PROCESSES: Number of processes to use (default: all CPUs minus one)
  • Logging:
    • -q, --quiet: Silent logging mode (default: False)
    • --debug: Debug logging mode (default: False)
    • --logfile LOGFILE: Store log to a file (default: standard error output)
    • -v, --version: show version of this script and exit

Example

binonymizer corpus.en-es.raw corpus.en-es.anon en es --format cols  --tmp_dir /tmpdir -b50000 -p31 

This will read the corpus "corpus.en-es.raw", which is in a column-based format, extracting personal data and writing the tagged output in "corpus.en-es.anon". Binonymizer will run in blocks of 50000 sentences, using 31 cores, and writing temporary files in /tmpdir

Lite version

Although binonymizer makes use of parallelization by distributing workload to the available cores, some users might prefer to implement their own parallelization strategies. For that reason, a single-thread version of the script is provided: binonymizer_lite. The usage is exactly the same as for the full version, but omitting the blocksize (-b) and processes (-p) parameter.

TO DO

  • Fully support TMX input/output
  • Address recognition
  • GPU support
  • Automate Prompsit-python-bindings submodule ( git submodule update --remote , python3.6 setup.py install)

1: See EC definition of "personal information": https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

binonymizer-0.1.1.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

binonymizer-0.1.1-py3-none-any.whl (33.7 kB view details)

Uploaded Python 3

File details

Details for the file binonymizer-0.1.1.tar.gz.

File metadata

  • Download URL: binonymizer-0.1.1.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for binonymizer-0.1.1.tar.gz
Algorithm Hash digest
SHA256 8c72e8c1191564ea98bd65e41f86896d278929a3a024b6a84f21dcde12b2a76f
MD5 9a9f1ec55072fbaf5dabc84dd0017fe8
BLAKE2b-256 5065bf7e08f216262b6ea4fcbdcf3b873c38e35f53c35c140f0331b880291cd2

See more details on using hashes here.

File details

Details for the file binonymizer-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: binonymizer-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 33.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for binonymizer-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5f6e3cb226daae912843ca82a19860b24b633dc0dbebb67ae4af4717816e4658
MD5 6d9411a6444e307518ace451a41c3d65
BLAKE2b-256 43c222b06d02e1187ce12716b5b339ad23606abf15e85fde9c5a706ba96381d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page