Skip to main content

Categorisation of labeled data

Project description

===============================
binopt
===============================


.. image:: https://img.shields.io/pypi/v/binopt.svg
:target: https://pypi.python.org/pypi/binopt


.. image:: https://img.shields.io/travis/yhaddad/binopt.svg
:target: https://travis-ci.org/yhaddad/binopt


.. image:: https://readthedocs.org/projects/binopt/badge/?version=latest
:target: https://binopt.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status


.. image:: https://pyup.io/repos/github/yhaddad/binopt/shield.svg
:target: https://pyup.io/repos/github/yhaddad/binopt/
:alt: Updates

.. image:: https://zenodo.org/badge/86721620.svg
:target: https://zenodo.org/badge/latestdoi/86721620


This package is aiming to categorize labeled data in terms of a global figure of merit. In high energy physics, categorization of collision data is done by maximizing the discovery significance. This package run on unbinned binary datasets.

installation
************
Install like any other python package::

pip install binopt --user

or::

git clone git@github.com:yhaddad/binopt.git
cd binopt/
pip install .


Getting started
***************

.. code-block:: python

sevent = 1000
bevent = 10000
X = np.concatenate((
expit(np.random.normal(+2.0, 2.0, sevent)),
expit(np.random.normal(-0.5, 2.0, bevent))
))
Y = np.concatenate((
np.ones(sevent),
np.zeros(bevent)
))
W = np.concatenate((np.ones(sevent), np.ones(bevent)))

binner = binopt.optimize_bin(
nbins=3, range=[0, 1],
drop_last_bin=True,
fix_upper=True,
fix_lower=False,
use_kde_density=True
)
opt = binner.fit(
X, Y, sample_weights=W,
method="Nelder-Mead",
breg=None, fom="AMS2"
)

print "bounds : ", opt.x
print "signif : ", binner.binned_score(opt.x)
print "Nsig : ", binner.binned_stats(opt.x)[0]
print "Nbkg : ", binner.binned_stats(opt.x)[1]


* Free software: GNU General Public License v3
* Documentation: https://binopt.readthedocs.io.


Features
--------

* TODO

Credits
---------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2017-04-06)
------------------

* First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

binopt-0.2.1.tar.gz (28.6 kB view details)

Uploaded Source

Built Distribution

binopt-0.2.1-py2.py3-none-any.whl (18.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file binopt-0.2.1.tar.gz.

File metadata

  • Download URL: binopt-0.2.1.tar.gz
  • Upload date:
  • Size: 28.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for binopt-0.2.1.tar.gz
Algorithm Hash digest
SHA256 b897d9b333f9d58168ac62b8524ce6fb71e86169b8f0d108e7ce7171a42ce0f0
MD5 85ad86dde958048ce4e88831fdf3b2c6
BLAKE2b-256 b7b2f99d747e4c565db6ee4d40b492dcd0446679130936d4f53ba2571bd92814

See more details on using hashes here.

File details

Details for the file binopt-0.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for binopt-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2efee2f3e78e57d3508d9041c4a4039160293fcc6495f40146cfe500e193c2d9
MD5 c6abc75a8b10706bcd929534f80e8a6e
BLAKE2b-256 8a3e2782b23fe6246857262b2c04e9bd5a3724c2b434e1fbe9cfb0b93ef25b49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page