Skip to main content

Categorisation of labeled data

Project description

===============================
binopt
===============================


.. image:: https://img.shields.io/pypi/v/binopt.svg
:target: https://pypi.python.org/pypi/binopt


.. image:: https://img.shields.io/travis/yhaddad/binopt.svg
:target: https://travis-ci.org/yhaddad/binopt


.. image:: https://readthedocs.org/projects/binopt/badge/?version=latest
:target: https://binopt.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status


.. image:: https://pyup.io/repos/github/yhaddad/binopt/shield.svg
:target: https://pyup.io/repos/github/yhaddad/binopt/
:alt: Updates

.. image:: https://zenodo.org/badge/86721620.svg
:target: https://zenodo.org/badge/latestdoi/86721620


This package is aiming to categorize labeled data in terms of a global figure of merit. In high energy physics, categorization of collision data is done by maximizing the discovery significance. This package run on unbinned binary datasets.

installation
************
Install like any other python package::

pip install binopt --user

or::

git clone git@github.com:yhaddad/binopt.git
cd binopt/
pip install .


Getting started
***************

.. code-block:: python

sevent = 1000
bevent = 10000
X = np.concatenate((
expit(np.random.normal(+2.0, 2.0, sevent)),
expit(np.random.normal(-0.5, 2.0, bevent))
))
Y = np.concatenate((
np.ones(sevent),
np.zeros(bevent)
))
W = np.concatenate((np.ones(sevent), np.ones(bevent)))

binner = binopt.optimize_bin(
nbins=3, range=[0, 1],
drop_last_bin=True,
fix_upper=True,
fix_lower=False,
use_kde_density=True
)
opt = binner.fit(
X, Y, sample_weights=W,
method="Nelder-Mead",
breg=None, fom="AMS2"
)

print "bounds : ", opt.x
print "signif : ", binner.binned_score(opt.x)
print "Nsig : ", binner.binned_stats(opt.x)[0]
print "Nbkg : ", binner.binned_stats(opt.x)[1]


* Free software: GNU General Public License v3
* Documentation: https://binopt.readthedocs.io.


Features
--------

* TODO

Credits
---------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2017-04-06)
------------------

* First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

binopt-0.2.1.tar.gz (28.6 kB view hashes)

Uploaded source

Built Distribution

binopt-0.2.1-py2.py3-none-any.whl (18.1 kB view hashes)

Uploaded 2 7

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page