Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Categorisation of labeled data

Project Description

===============================
binopt
===============================


.. image:: https://img.shields.io/pypi/v/binopt.svg
:target: https://pypi.python.org/pypi/binopt


.. image:: https://img.shields.io/travis/yhaddad/binopt.svg
:target: https://travis-ci.org/yhaddad/binopt


.. image:: https://readthedocs.org/projects/binopt/badge/?version=latest
:target: https://binopt.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status


.. image:: https://pyup.io/repos/github/yhaddad/binopt/shield.svg
:target: https://pyup.io/repos/github/yhaddad/binopt/
:alt: Updates

.. image:: https://zenodo.org/badge/86721620.svg
:target: https://zenodo.org/badge/latestdoi/86721620


This package is aiming to categorize labeled data in terms of a global figure of merit. In high energy physics, categorization of collision data is done by maximizing the discovery significance. This package run on unbinned binary datasets.

installation
************
Install like any other python package::

pip install binopt --user

or::

git clone git@github.com:yhaddad/binopt.git
cd binopt/
pip install .

Getting started
***************

.. code-block:: python

sevent = 1000
bevent = 10000
X = np.concatenate((
expit(np.random.normal(+2.0, 2.0, sevent)),
expit(np.random.normal(-0.5, 2.0, bevent))
))
Y = np.concatenate((
np.ones(sevent),
np.zeros(bevent)
))
W = np.concatenate((np.ones(sevent), np.ones(bevent)))

binner = binopt.optimize_bin(
nbins=3, range=[0, 1],
drop_last_bin=True,
fix_upper=True,
fix_lower=False,
use_kde_density=True
)
opt = binner.fit(
X, Y, sample_weights=W,
method="Nelder-Mead",
breg=None, fom="AMS2"
)

print "bounds : ", opt.x
print "signif : ", binner.binned_score(opt.x)
print "Nsig : ", binner.binned_stats(opt.x)[0]
print "Nbkg : ", binner.binned_stats(opt.x)[1]


* Free software: GNU General Public License v3
* Documentation: https://binopt.readthedocs.io.


Features
--------

* TODO

Credits
---------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2017-04-06)
------------------

* First release on PyPI.

Release History

This version
History Node

0.2.0

History Node

0.1.0

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, Size & Hash SHA256 Hash Help File Type Python Version Upload Date
binopt-0.2.0-py2.py3-none-any.whl
(18.5 kB) Copy SHA256 Hash SHA256
Wheel 2.7 Feb 9, 2018
binopt-0.2.0.tar.gz
(28.9 kB) Copy SHA256 Hash SHA256
Source None Feb 9, 2018

Supported By

Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Google Google Cloud Servers DreamHost DreamHost Log Hosting