Python implementation of binary similarity and distance measures.
Project description
binsdpy - binary similarity and distance measures
Python implementation of binary similarity (see [1]) and distance measures (see [2]). The bitsets
(immutable ordered set data type) and numpy.ndarray
are suported as feature vectors.
Example
Example based on bitsets
:
from bitsets import bitset
from binsdpy.similarity import jaccard
from binsdpy.distance import euclid
Colors = bitset("Colors", ("red", "blue", "green", "yellow"))
a = Colors.frommembers(["red", "blue"])
b = Colors.frommembers(["red", "yellow"])
jaccard(a, b)
# > 0.3333333333333333
euclid(a, b)
# > 1.4142135623730951
Example based on np.ndarray
:
import numpy as np
from binsdpy.similarity import jaccard
from binsdpy.distance import euclid
a = np.array([1, 1, 0, 0], dtype=bool)
b = np.array([1, 0, 0, 1], dtype=bool)
jaccard(a, b)
# > 0.3333333333333333
euclid(a, b)
# > 1.4142135623730951
Installation
Package is avaliable in alpha version via pip
.
$ pip install binsdpy
Dependencies
binsdpy requires:
- Python (>= 3.6)
- bitset
- numpy
Reference
[1] Brusco, M., Cradit, J. D., & Steinley, D. (2021). A comparison of 71 binary similarity coefficients: The effect of base rates. Plos one, 16(4), e0247751. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247751
[2] Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A survey of binary similarity and distance measures. Journal of systemics, cybernetics and informatics, 8(1), 43-48. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6123&rep=rep1&type=pdf
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file binsdpy-0.2.4.tar.gz
.
File metadata
- Download URL: binsdpy-0.2.4.tar.gz
- Upload date:
- Size: 12.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38786053908c5fd3ee037e5ac64b701116a18015d28b1d4f4a2d83a4c8e4aea2 |
|
MD5 | 4c1a023b1857b5bf059b109334234780 |
|
BLAKE2b-256 | acef57962a8f3e8118fd5a88c7efa5cfc9267b7a84045d34aa91ad8a4bd5ec25 |