Open-source collection of biology datasets and pre-trained embeddings.
Project description
Bio-datasets
Open-source collection of biology datasets and pre-trained embeddings. :dna: :closed_book:
Description
bio-datasets is a collaborative framework that allows the user to fetch publicly available sequence-based protein datasets. For these datasets, pre-trained contextual embeddings are also available.
Installation
Install the required dependencies with pip install bio-datasets
.
How it works
from biodatasets import list_datasets, load_dataset
print(list_datasets())
# Load your dataset
pathogen = load_dataset("pathogen")
# Display the available columns and embeddings
print(pathogen)
# Get data from your dataset
X, y = pathogen.to_npy_arrays(input_names=["sequence"], target_names=["class"])
embeddings = pathogen.get_embeddings("sequence", "protbert", "cls")
# Get a full description of your dataset
pathogen.display_description()
How to contribute
Check out how to setup the project or add a public dataset in CONTRIBUTING.md.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bio-datasets-0.0.4.tar.gz
(6.7 kB
view details)
Built Distribution
File details
Details for the file bio-datasets-0.0.4.tar.gz
.
File metadata
- Download URL: bio-datasets-0.0.4.tar.gz
- Upload date:
- Size: 6.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4d56f4c9745f871ce7f399df209053911796d1df3fb2f53a90e0a54d9430f8b |
|
MD5 | 817c6ab7252e5f3a7636348a7ed9b70e |
|
BLAKE2b-256 | a2196956ce4781f8823260f0376b017677d93c886942ab0dea9c980d17339e01 |
File details
Details for the file bio_datasets-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: bio_datasets-0.0.4-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dce5198d089d46f48957e02d7fe5030a920166d916bf4079c198ed6b6eb0e098 |
|
MD5 | 0bf06cda7efb967025405570583eb3c5 |
|
BLAKE2b-256 | 1dc4ee5b56e0215cef8c4562eeed1a5ae4f9cfffecc3381c02b7e19673298104 |