Skip to main content

A pipeline for protein embedding generation and visualization

Project description

Bio Embeddings

Resources to learn about bio_embeddings:

Project aims:

  • Facilitate the use of language model based biological sequence representations for transfer-learning by providing a single, consistent interface and close-to-zero-friction
  • Reproducible workflows
  • Depth of representation (different models from different labs trained on different dataset for different purposes)
  • Extensive examples, handle complexity for users (e.g. CUDA OOM abstraction) and well documented warnings and error messages.

The project includes:

  • General purpose python embedders based on open models trained on biological sequence representations (SeqVec, ProtTrans, UniRep,...)
  • A pipeline which:
    • embeds sequences into matrix-representations (per-amino-acid) or vector-representations (per-sequence) that can be used to train learning models or for analytical purposes
    • projects per-sequence embedidngs into lower dimensional representations using UMAP or t-SNE (for lightwieght data handling and visualizations)
    • visualizes low dimensional sets of per-sequence embeddings onto 2D and 3D interactive plots (with and without annotations)
    • extracts annotations from per-sequence and per-amino-acid embeddings using supervised (when available) and unsupervised approaches (e.g. by network analysis)
  • A webserver that wraps the pipeline into a distributed API for scalable and consistent workfolws

Installation

You can install bio_embeddings via pip or use it via docker.

Pip

Install the pipeline like so:

pip install bio-embeddings[all]

To install the unstable version, please install the pipeline like so:

pip install -U "bio-embeddings[all] @ git+https://github.com/sacdallago/bio_embeddings.git"

Docker

We provide a docker image at ghcr.io/bioembeddings/bio_embeddings. Simple usage example:

docker run --rm --gpus all \
    -v "$(pwd)/examples/docker":/mnt \
    -v bio_embeddings_weights_cache:/root/.cache/bio_embeddings \
    -u $(id -u ${USER}):$(id -g ${USER}) \
    ghcr.io/bioembeddings/bio_embeddings:v0.1.6 /mnt/config.yml

See the docker example in the examples folder for instructions. You can also use ghcr.io/bioembeddings/bio_embeddings:latest which is built from the latest commit.

Installation notes

bio_embeddings was developed for unix machines with GPU capabilities and CUDA installed. If your setup diverges from this, you may encounter some inconsistencies (e.g. speed is significantly affected by the absence of a GPU and CUDA). For Windows users, we strongly recommend the use of Windows Subsystem for Linux.

What model is right for you?

Each models has its strengths and weaknesses (speed, specificity, memory footprint...). There isn't a "one-fits-all" and we encourage you to at least try two different models when attempting a new exploratory project.

The models prottrans_bert_bfd, prottrans_albert_bfd, seqvec and prottrans_xlnet_uniref100 were all trained with the goal of systematic predictions. From this pool, we believe the optimal model to be prottrans_bert_bfd, followed by seqvec, which has been established for longer and uses a different principle (LSTM vs Transformer).

Usage and examples

We highly recommend you to check out the examples folder for pipeline examples, and the notebooks folder for post-processing pipeline runs and general purpose use of the embedders.

After having installed the package, you can:

  1. Use the pipeline like:

    bio_embeddings config.yml
    

    A blueprint of the configuration file, and an example setup can be found in the examples directory of this repository.

  2. Use the general purpose embedder objects via python, e.g.:

    from bio_embeddings.embed import SeqVecEmbedder
    
    embedder = SeqVecEmbedder()
    
    embedding = embedder.embed("SEQVENCE")
    

    More examples can be found in the notebooks folder of this repository.

Cite

Dallago, C., Schütze, K., Heinzinger, M., Olenyi, T., Littmann, M., Lu, A. X., Yang, K. K., Min, S., Yoon, S., Morton, J. T., & Rost, B. (2021). Learned embeddings from deep learning to visualize and predict protein sets. Current Protocols, 1, e113. doi: 10.1002/cpz1.113

The corresponding bibtex:

@article{https://doi.org/10.1002/cpz1.113,
author = {Dallago, Christian and Schütze, Konstantin and Heinzinger, Michael and Olenyi, Tobias and Littmann, Maria and Lu, Amy X. and Yang, Kevin K. and Min, Seonwoo and Yoon, Sungroh and Morton, James T. and Rost, Burkhard},
title = {Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets},
journal = {Current Protocols},
volume = {1},
number = {5},
pages = {e113},
keywords = {deep learning embeddings, machine learning, protein annotation pipeline, protein representations, protein visualization},
doi = {https://doi.org/10.1002/cpz1.113},
url = {https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpz1.113},
eprint = {https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/cpz1.113},
year = {2021}
}

Contributors

  • Christian Dallago (lead)
  • Konstantin Schütze
  • Tobias Olenyi
  • Michael Heinzinger

Non-exhaustive list of tools available (see following section for more details):


Tools by category

Pipeline
General purpose embedders

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bio_embeddings-0.2.0.tar.gz (61.3 kB view details)

Uploaded Source

Built Distribution

bio_embeddings-0.2.0-py3-none-any.whl (88.3 kB view details)

Uploaded Python 3

File details

Details for the file bio_embeddings-0.2.0.tar.gz.

File metadata

  • Download URL: bio_embeddings-0.2.0.tar.gz
  • Upload date:
  • Size: 61.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.10 Linux/4.15.0-117-generic

File hashes

Hashes for bio_embeddings-0.2.0.tar.gz
Algorithm Hash digest
SHA256 5168ba0042be78d6da23c17a8c1c550cfade0e48e1ba31d26fd8c17403fc6667
MD5 d864608ee7d12153442e1645d584188c
BLAKE2b-256 240d8d0ca08cd491b0e6886426e61888ab0c1ba137263c6ec336c7cdda8ff2a0

See more details on using hashes here.

Provenance

File details

Details for the file bio_embeddings-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: bio_embeddings-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 88.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.10 Linux/4.15.0-117-generic

File hashes

Hashes for bio_embeddings-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 686b7260ea76ff984af404eef6cab52fb4634332eb873ce459903c6d08d3275e
MD5 5a5e57790b73b4f8b032a446cd389d41
BLAKE2b-256 08efa3ced5c4a39abcbb3c73778e481f46f1af42917bda0bff51fe06a7d206af

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page