Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.17.16.tar.gz (473.6 kB view details)

Uploaded Source

Built Distributions

biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.17.16-cp312-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.17.16-cp312-cp312-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.17.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.17.16-cp312-cp312-macosx_11_0_arm64.whl (17.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.17.16-cp312-cp312-macosx_10_12_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.17.16-cp311-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.17.16-cp311-cp311-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.17.16-cp311-cp311-macosx_11_0_arm64.whl (17.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.17.16-cp311-cp311-macosx_10_12_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.17.16-cp310-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.17.16-cp310-cp310-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.17.16-cp39-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.17.16-cp39-cp39-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.17.16-cp39-cp39-macosx_11_0_arm64.whl (17.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

biobear-0.17.16-cp39-cp39-macosx_10_12_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

biobear-0.17.16-cp38-none-win_amd64.whl (18.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.17.16-cp38-cp38-manylinux_2_28_aarch64.whl (18.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.17.16.tar.gz.

File metadata

  • Download URL: biobear-0.17.16.tar.gz
  • Upload date:
  • Size: 473.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.17.16.tar.gz
Algorithm Hash digest
SHA256 7d88ace802bd174dd3b1df85f3865415c108ff773eeacc6513dc0eaa1f3d65dc
MD5 844e39458ca2e3ac22238e66b5bbaa57
BLAKE2b-256 c1661753ad4e29d5fd722b89394eccc54f1ed3b8e967d1e4a0c35fe00b1f6d0e

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cc0b877ee38baac20ffcfd012539a138eafc8e75d4c04ea11e73b8aca9afae1d
MD5 e4c76358ac995167d38f5483e095bbb6
BLAKE2b-256 b09b18cae9ea0c60929977a6ad85748ec1c076b3631fd91de29505e23bf27065

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91dce0ebcbbe0726aeeebecc5e705c0d0716fd3528558ad5e5c003e6a0485acd
MD5 373b2364ad39ca1ff26d86039cbbef08
BLAKE2b-256 cc9c0bd9c437ebe390606d73fe2210349f71c6d9a6223bc151cf8007ea27bcfd

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d63d54da6a81a7bcd8220342de6d2acbaab15863020f0896256870b52aedc008
MD5 e45eb14d17e7e46fe8656613e4e870bf
BLAKE2b-256 1d5276689997a489fcf3fa534f0f12c7eccc27dde7424d186370d1e13d9d3693

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff27579a4cc8e4beed748454eacbf8c1c1cef31bd1befaa6bb40b2e052dc5c7e
MD5 42f596b8693bd641094c3eb1c2b03559
BLAKE2b-256 02705bbd43a95c23a5328f3bc75c5dfafea6edb7216c9e3d2b011b5e5a333041

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ca33eedfb12a40e537d9b15f89682b8f31c224092126eaa52b01d77ee9cdbddb
MD5 07397841beca23bd484c80e31e9ce248
BLAKE2b-256 00fcceea0074b037cfeadf9f599c6e228fe83459b9c5545a702ab9fcd6341303

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a17cfe21679f8b1647a66463eab587d56bb8f3a236f47fa9ebca7d5a24db95c
MD5 c996abac2f921649390deb7e6fe0adbc
BLAKE2b-256 2db99664ff32b53b5b8fa01669bbea7372389cb760cd4f17105adc2a7537cd69

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 c909d5a529c6bfa01e86e5d022aab58fab8299c71a65c028210f468d6edb6520
MD5 8bd985efa22a4e8923725040d73e9d75
BLAKE2b-256 ecc5be70e3a1740922fa28cefb8147ee18bf67a7e1b855b059c4bd1ed6353fe0

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1410cb0b0d23da123d26462d3bf27d84f13c40b3d3ebf5acf150fbf228453940
MD5 103e40b6c9fc3e077a53fb752a3a3845
BLAKE2b-256 2a68ae00ec35b9a78744476a22aa88fb25cb2784f5e8633395a89aafe6229f51

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7eaf403ad60b29e9d1f9ab2d2a379a723cb35beb7d96bed76039cab675f33466
MD5 3858d502525e992d0f19ffaa01e06891
BLAKE2b-256 06986c2926f21644a372cb78ae71b4a3baac0a9ce65055eab9fcfadba7aab615

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 934ae834a0975c25e8354fc268b8b1075a07fccdafaaf8df0a914fe39652f037
MD5 d57e8f3efc2bcad8ce6bc1d094dcc983
BLAKE2b-256 1e4324810130aa7cf8025563046064b936d04852e8f723ab919691a39c099dd3

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0c333a735aa36e11fc5fc52f1c88a707d4745b172bf9b3e60718a1a5d5b174a9
MD5 a1f64ca74f0d40b53389199274e5a254
BLAKE2b-256 7fdd6863c12a6966cecc298263eb577a5a3402a30521560040955998deb594d9

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 08f4492545fa166832ead2c9eddab67a431f8d4cb401aa3af1cade6a4ef0db32
MD5 e9a4bed25fdb8788268bb0edc85ee342
BLAKE2b-256 592702152af4c13f65b63ed474a4acb49289f3d9478c77e63692522c66d3ef8b

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8e1cc6adb0d535bac780c85410c3d7eeb6acb77489b60062bf46f35e36cd5dcd
MD5 22b2c2c6851e992a91a25516247e092c
BLAKE2b-256 3d21cd9d6f558da6333fbbb4be4c5acf00940e8c7e90fb940860d5773dcfa9f4

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6d8e3793817c33c6294cb99b48a271ff93fec9aa358629ea9d70d46539152a3
MD5 e9728549b39eca3ffde0451547eecad5
BLAKE2b-256 aaae301b81f9f9df82f6109f688d2b9ddfcad93b91175e35ddf300affeead751

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da6f4d3af5f328bc88433d12b08217f43c5da8cdbe435e9576d626cceb2854e2
MD5 6b82d08b2627fbad98814a6f06c2f260
BLAKE2b-256 994ae001b77162ead0985594b12822e74e350153d868deb52710cf353935a721

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fe1997ca312a00fda60703dedec336117da10729d76c62ba68f2e5980bb40977
MD5 bfb787726043a36646aa48d06f6b7098
BLAKE2b-256 0da4454b710315dbfabda76e63c19127fae1bbfceb92c8c47f2dd607f93e6718

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ae1f3968b71ed875af9d84507be3cda3cbb21b8c6bfad2f584f1bcd926632253
MD5 b10824ae72cde9e878af2e737917b7d5
BLAKE2b-256 d77ef2130dc37c1f236de36678836b11066625b3bf14a330455498910139aeda

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e438258b59d3a87f3f6546e0843700c3fea1dbfb90b8ad3edc9667259244771b
MD5 6a2a1770c366387fd6ab460dd743b953
BLAKE2b-256 27866a088f391b65a28a5f97ef39bc949a1838de95cef727191879dcd3fe094a

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbe0a5c2e382d4d23c99a70905623877204270080203ec256433e313cbf99743
MD5 5f1e4627beec95cbb7ee7faaada07326
BLAKE2b-256 1e2157db446f0f4f8a4db6cdac3014f26ce9b5eae8b55663626513525e1fb680

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8b452251cbecc98cb86d729de3c42ec29bac84af8ea0100dde73e2f05f975e89
MD5 a4d8b116b81c7571d52dab9f257a10b4
BLAKE2b-256 bb756c77ed45271148dad138ebeea4fae5e8a9c0cf9ce8abf0498f878c170c8e

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e661988f412d313f958d8b5b5fbe62f9cb54153956d6b344fdfb492023b2ed27
MD5 9f5436d4c4aa066953361370ac387eaf
BLAKE2b-256 5e5c9faede4649dd22b31609f1be80c86bce1d210695d5199243b0230cf5d608

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b81933479200fac734e4d319c9ea126d83aaf5e49ff760e12362992a924345e
MD5 55ddcf60353e23c5b32378b715f6d16b
BLAKE2b-256 61f9c325dcb47e574d8155e103f1ac7ec461c3ef053941bde66bf7e04e5da144

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9ccf3528627ecff5a6dce474aeedfb74d23b1bb4b019613f0de4af15fe5136d
MD5 5f303b93be84a65cb9e89794008772ec
BLAKE2b-256 cd112df5bd9e9490f7863373c67dc6db828547c1f3dce0a81144e903484c144c

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8a88a45a5a31b01442c6b294b65ce9a6ad86bdbb74af6e1323c1a719b90ad6c7
MD5 8f7112af6b1a05df3867e423002d918d
BLAKE2b-256 46a5682841180cd37fe6808cabff320da6087b43d9c9b656b38b33b7bbecfa2f

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 07734039c96f6222ee848a83c040c0d70b33dcc214113a04f4bc9a99a3eaf92c
MD5 d0d366ea673074e1b951754b42bb1ba3
BLAKE2b-256 377b77fe69fef52c7e27b3cf8a2ed353850e6a3841be79846504fee820fa179e

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7b92326afaaa8c57fb00b39f84b257779540bdd2bae8316fc03aeb280c74dc23
MD5 a80b179aa70fb93b07862919f654dc22
BLAKE2b-256 39584cffd2eb32d2b9ece4fc33072e917b2a7e3adb538f4e2616a15943150a7b

See more details on using hashes here.

File details

Details for the file biobear-0.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f041ffa1be1f5b17261fb241a87e6ab2e643fee2b1f499c088bb2095bef1fad1
MD5 1394ac1c64c4dcfeb97423758a1ddc27
BLAKE2b-256 1a5c25edb007843942c41d0e181d34c7fd549dcc923ce34b72256ee9fcb8cf1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page