Skip to main content

A package for working with Bioinformatics data with SQL and Arrow

Project description

biobear

biobear is a Python library designed for reading and searching bioinformatic file formats, using Rust as its backend and producing Arrow Batch Readers and other downstream formats (like polars or duckdb).

The python package has minimal dependencies and only requires Polars. Biobear can be used to read various bioinformatic file formats, including FASTA, FASTQ, VCF, BAM, and GFF locally or from an object store like S3. It can also query some indexed file formats locally like VCF and BAM.

Release

Please see the documentation for information on how to get started using biobear.

Quickstart

To install biobear, run:

pip install biobear
pip install polars # needed for `to_polars` method

Create a file with some GFF data:

echo "chr1\t.\tgene\t1\t100\t.\t+\t.\tgene_id=1;gene_name=foo" > test.gff
echo "chr1\t.\tgene\t200\t300\t.\t+\t.\tgene_id=2;gene_name=bar" >> test.gff

Then you can use biobear to read a file:

import biobear as bb

session = bb.connect()
df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

print(df)

This will print:

┌─────────┬────────┬──────┬───────┬───┬───────┬────────┬───────┬───────────────────────────────────┐
│ seqname ┆ source ┆ type ┆ start ┆ … ┆ score ┆ strand ┆ phase ┆ attributes                        │
│ ---     ┆ ---    ┆ ---  ┆ ---   ┆   ┆ ---   ┆ ---    ┆ ---   ┆ ---                               │
│ str     ┆ str    ┆ str  ┆ i64   ┆   ┆ f32   ┆ str    ┆ str   ┆ list[struct[2]]                   │
╞═════════╪════════╪══════╪═══════╪═══╪═══════╪════════╪═══════╪═══════════════════════════════════╡
│ chr1    ┆ .      ┆ gene ┆ 1     ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","1"}, {"gene_name","… │
│ chr1    ┆ .      ┆ gene ┆ 200   ┆ … ┆ null  ┆ +      ┆ null  ┆ [{"gene_id","2"}, {"gene_name","… │
└─────────┴────────┴──────┴───────┴───┴───────┴────────┴───────┴───────────────────────────────────┘

Using a Session w/ Exon

BioBear exposes a session object that can be used with exon to work with files directly in SQL, then eventually convert them to a DataFrame if needed.

See the BioBear Docs for more information, but in short, you can use the session like this:

import biobear as bb

session = bb.connect()

session.sql("""
CREATE EXTERNAL TABLE gene_annotations_s3 STORED AS GFF LOCATION 's3://BUCKET/TenflaDSM28944/IMG_Data/Ga0451106_prodigal.gff'
""")

df = session.sql("""
    SELECT * FROM gene_annotations_s3 WHERE score > 50
""").to_polars()
df.head()
# shape: (5, 9)
# ┌──────────────┬─────────────────┬──────┬───────┬───┬────────────┬────────┬───────┬───────────────────────────────────┐
# │ seqname      ┆ source          ┆ type ┆ start ┆ … ┆ score      ┆ strand ┆ phase ┆ attributes                        │
# │ ---          ┆ ---             ┆ ---  ┆ ---   ┆   ┆ ---        ┆ ---    ┆ ---   ┆ ---                               │
# │ str          ┆ str             ┆ str  ┆ i64   ┆   ┆ f32        ┆ str    ┆ str   ┆ list[struct[2]]                   │
# ╞══════════════╪═════════════════╪══════╪═══════╪═══╪════════════╪════════╪═══════╪═══════════════════════════════════╡
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2     ┆ … ┆ 54.5       ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_2_238"]}, … │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 228   ┆ … ┆ 114.0      ┆ -      ┆ 0     ┆ [{"ID",["Ga0451106_01_228_941"]}… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 1097  ┆ … ┆ 224.399994 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_1097_2257"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 2261  ┆ … ┆ 237.699997 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_2261_3787"… │
# │ Ga0451106_01 ┆ Prodigal v2.6.3 ┆ CDS  ┆ 3784  ┆ … ┆ 114.400002 ┆ +      ┆ 0     ┆ [{"ID",["Ga0451106_01_3784_4548"… │
# └──────────────┴─────────────────┴──────┴───────┴───┴────────────┴────────┴───────┴───────────────────────────────────┘

Ecosystem

BioBear aims to make it simple to move easily to and from different prominent data tools in Python. Generally, if the tool can read Arrow, it can read BioBear's output. To call out a few examples here:

Polars

The session results and Reader objects can be converted to a Polars DataFrame.

import biobear as bb

session = bb.connect()

df = session.sql("""
    SELECT * FROM gff_scan('test.gff')
""").to_polars()

Known Issues

For GenBank and mzML, the naive SELECT * will cause an error, because Polars doesn't support all Arrow types -- Map being the specific offender here. In these cases, select the fields from the map individually. Alternatively, you can first convert the table to a Pandas DataFrame.

DuckDB

BioBear can also be used to read files into a duckdb database.

import biobear as bb
import duckdb

session = bb.connect()

session.sql("""
    CREATE EXTERNAL TABLE gene_annotations STORED AS GFF LOCATION 'python/tests/data/test.gff'
""")

result = session.sql("""
    SELECT * FROM gene_annotations
""")

gff_table_arrow_table = result.to_arrow()

duckdb_conn = duckdb.connect()

result = duckdb_conn.execute('SELECT * FROM gff_table_arrow_table').fetchall()
print(result)

Performance

Please see the exon's performance metrics for thorough benchmarks, but in short, biobear is generally faster than other Python libraries for reading bioinformatic file formats.

For example, here's quick benchmarks for reading one FASTA file with 1 million records and reading 5 FASTA files each with 1 million records for the local file system on an M1 MacBook Pro:

Library 1 file (s) 5 files (s)
BioBear 4.605 s ± 0.166 s 6.420 s ± 0.113 s
BioPython 6.654 s ± 0.003 s 34.254 s ± 0.053 s

The larger difference multiple files is due to biobear's ability to read multiple files in parallel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biobear-0.20.1.tar.gz (805.9 kB view details)

Uploaded Source

Built Distributions

biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

biobear-0.20.1-cp312-none-win_amd64.whl (18.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

biobear-0.20.1-cp312-cp312-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

biobear-0.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

biobear-0.20.1-cp312-cp312-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

biobear-0.20.1-cp312-cp312-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

biobear-0.20.1-cp311-none-win_amd64.whl (18.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

biobear-0.20.1-cp311-cp311-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

biobear-0.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biobear-0.20.1-cp311-cp311-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

biobear-0.20.1-cp311-cp311-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

biobear-0.20.1-cp310-none-win_amd64.whl (18.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

biobear-0.20.1-cp310-cp310-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

biobear-0.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biobear-0.20.1-cp310-cp310-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

biobear-0.20.1-cp310-cp310-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

biobear-0.20.1-cp39-none-win_amd64.whl (18.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

biobear-0.20.1-cp39-cp39-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

biobear-0.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biobear-0.20.1-cp39-cp39-macosx_11_0_arm64.whl (17.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

biobear-0.20.1-cp39-cp39-macosx_10_12_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

biobear-0.20.1-cp38-none-win_amd64.whl (18.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

biobear-0.20.1-cp38-cp38-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

biobear-0.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file biobear-0.20.1.tar.gz.

File metadata

  • Download URL: biobear-0.20.1.tar.gz
  • Upload date:
  • Size: 805.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for biobear-0.20.1.tar.gz
Algorithm Hash digest
SHA256 03bb0c1039f95c5994fccc3329b1c5d24215d681b6b83f30d54e0b8a31b6bdf4
MD5 4eb1c2cbda6d3891c1e702fa25d40211
BLAKE2b-256 1d01acdbfc8fb2d13eb883175889008a5e532cbde81c41210708ee5882bd2541

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 088c4006f33dbac2021d1626473d03a4eb7bcfab2901fcf28be26921126806c6
MD5 06eef7cb7818ea9ccddc08ed62f192b9
BLAKE2b-256 126e81a027f5ad6caf8b06314bf59a87063e0f96e087e0f7dc32d0403a625505

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 974580a10fe1dd03a37fde47fcf633ef3625d9d4b8e5a878b522a8434424ce73
MD5 f455be947655050626652d1c6e6011b2
BLAKE2b-256 e4c6e18655dfeef0414cfd74efc5e6629f4e27d1ae36ef43ce03a377d7030023

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 92f434b9a391e1d23f1982f4b15be7d9d6f618c2d9c277887c8480adc8e9f0cd
MD5 6e3064d04d60cc1ce312bcf216f541e1
BLAKE2b-256 5f997795cf606e4b1d137a15030c9f8115eda89151a4a2968dbf575f27c28aed

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d36a09dbd349a64e3d44f8f72ec285f90172d76b052aa70028d2536740beb876
MD5 c6edc5bf55de2f8f362de41b6e23dba9
BLAKE2b-256 7923e913899910a47d6badda8d72ae109e88efcf15b01f6acf129cb02133b213

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 432735feb2845a22457844167a8cc314bfd1f4e17e76565eae6257107ed1953c
MD5 1952b5b3dacaab90002c926e39c14000
BLAKE2b-256 68463aeefeaffc8f55f6e550cbfcf977456dcf5ce666793e0fa1c9d0144779cd

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c7aa907e9208ea286a15ba826d9637b1fe51c6fcd9cde9547b3c4885cae4274
MD5 fc770e449b78adacc5e43661fac24406
BLAKE2b-256 73615c56a4a926ab4761564e2e1c6540f2ab8875eda20229c97240ca11137564

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d2efd6ea6bb06fa7cd001edd65c60f1ff859187085ea13599a16640ba03bed37
MD5 dc59fa2dee1c2464a3864a15e47be0ba
BLAKE2b-256 490adc39d1343c52bd661f673c0a917b2725d8cad7e04ac88ec4b8555e9801ab

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b3b95319e06dacf5224de44d0af45125c2fbaeeadbb827c65d7802af7000e802
MD5 3e25dca3476be5b5aa2462b49c39c3fd
BLAKE2b-256 6c64949df7582a3b776311c6f8e4aa98232b2df62d2b8667716676cb8fc58e46

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2a31dd8c8e0ef5c2283758d4666da8c2e00db6b49abc74d135da0b813595796
MD5 a265e180a48385015b86484df6811a77
BLAKE2b-256 0e2483d5804f0d49aaa0cf97ae8d5876e6a5cfa4a309e8b9060e8bc5c50d48f3

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aefb6df137bb9ce1bf33f34ee4561a1119e561c9ad7175bea55c9923fa889d5a
MD5 1b1f1db8b342d5f187f2cbfc8152aaa7
BLAKE2b-256 67b7d1a2161bbd9d0e359da9c33e7a9f80ba5a6d693f560f35bbe67640410423

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2ba7ca16b7daf35bb4369d95d253b7fc25d537603eb628f31e2245b42788c4bc
MD5 a96799d86b4c4ad8bac55f2fd0dee6e8
BLAKE2b-256 9ddf175c04adee02f4f1b81c595054031ad2a038f7cd563a155af75d6aa5ae80

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ff090ab10b681d16ae6eaef1a0a580fcc09f7e50b57ab5f2e5f2c4ef03721480
MD5 8c8286c58201bf61c0fb3bd06f341dfc
BLAKE2b-256 b4d9e660b03ece43667b1d4b40651c27b69eed3ff519dff047677f36eae529ef

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c4c34f468976ea401c4dbbc4b6b79fc8707482cc409c5b1ff578a64c7e9c4942
MD5 1009477a759954e98bd764b1c834ae1a
BLAKE2b-256 bdb1899eeee8e0e27de98d7feb5be8f8f627694af8cc91a4570e324c74043982

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fc02da0cb58456304c0c634758a0ceb7ba05aa587854161125b3896c878ad52
MD5 389d363afa0f848975ba88102b27ca9e
BLAKE2b-256 ce8c0215f49bf61d978e1ce73bac7e99ad9aa45e4d4ae4ff9d4694761e0947f6

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db6b4ccd834c16a969d0c3df9f262d44fef4add3e4990b05a0d53af15cde8223
MD5 6bb1f932f66395c3a6db478065c84f5c
BLAKE2b-256 7255a0c4139fdd0ee324cd6f714d6cdc30fad6d739dc4c48cf5099cc5b803744

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c595264e3c1a2fe882a686baec10362fe9cbfdda8617ab14fb4b8b17b32f7708
MD5 715fa9b0ce5041de01eb51fca0f827da
BLAKE2b-256 b277a2d8dde01323a6c9485c658aaf7c5e263d6a83ddd64b311bf1b3038eb19d

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 7c27dd1190d24298d77670969693dea2099cd4749469e41be4626fc951f9bee0
MD5 d573f7fe9ed70b063eeed05e172bc698
BLAKE2b-256 e1680332f809fc1111d6655e532c56c94ce2d427c49fb2461f15d4186ee1b2d4

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c92c755666cdf0e5d917440f6fd47b60b36bd1ec81519e2d246da9af0dc7f2a3
MD5 4e0d490288f6468ac3282d029de2d57e
BLAKE2b-256 d89bedbd945bb34eba28fe185bc3435d3fba91c33d8c391f1ec228660b330934

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2361b21191f4a293c115dd01a92340f095e332457125079089aa21cfd7cdccc1
MD5 abf3a25a6d77577f9ef1c78253931172
BLAKE2b-256 6016a8d6ce5704eb8b8092a8c880d34360c60fca35538184c1d117be0f6c7aef

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b073e91374d375382e7b3aa302eb3074b568a00ae09901edb047ef35c2c59b7
MD5 fb543ed5d8693facc260116bae7becd9
BLAKE2b-256 5ffcc6310554cd65e64d6834dc14c45f1c72a751c202778c59d8763ab72bed78

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5e1a94b35ff527d239801d3c29304d0cbb8336414029aea275be911ceda1f767
MD5 ca59171d2ea8235ae85f7bd3bfd8333b
BLAKE2b-256 8450ed22f9adbb5648e23ed8f49093f325786ad1b571d5498dd85037072b3e3f

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a0d05ae19093f22293e45acb2d084c860a0a52623c86ef273b3b4df58229eb37
MD5 c5c55db4ab9b6409471e520576852978
BLAKE2b-256 9f56401fd414a4a4f65f493aa0f72c7f3c5a0b45a01156b9931c27df2249a7ac

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5f8b996f2bf2108e1c919b0d57c362106022eafa41399448e5c2335fc365b470
MD5 154acea3c5476068c14834c495b9ad0c
BLAKE2b-256 2cbf4a9400f9fc753e27088422ed7344bd19587f7636a9def167a7de9af4ea7c

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f419518900900ab81c51ac537eba49499a888937220d8ba212622725b02057c
MD5 e8e842d71d625b374e3a63349722e6b7
BLAKE2b-256 78321e8a52f1387e9f558ff497199f9fe6b9f232a01bc3fb2d10b1ab92b25950

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66abe431e179c60284b7e89803a07a82dab6d814e835b397954ec858cb070089
MD5 39faea9b626278b7d50d2d2d9b07a461
BLAKE2b-256 16865b66f0806e9398535793636a6503f7e41b97d77a6df2d7a2f3712046ca0b

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d2cf20a18e6efb104b953dcad08fbc804f40fcc058da7655077c27fd2e807c5c
MD5 566fcffa2bf8ef2249c7580b6ec4b8e0
BLAKE2b-256 3bd991afa9b83a764ed3fdd1a8cac1b9b8ad037561865c6b7eb34f152d4d4814

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 05e5c201bb6d3612f28ae64ca5056f3540912ed0b6666b9a6ee6a4ac1496127b
MD5 77485026b507bb7f4b47dc7b595afc69
BLAKE2b-256 72422b8f3f66c9491862dc89bb085532530d398bc02b4b00d0df8c802566f77f

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d8e2095bed486f3903345f016f6538ed0950d466a74354ad6b5c04e966b9b5d8
MD5 e26203c1662b6c44ed3ad75ba3c3bdd2
BLAKE2b-256 2f357e096a6a69018aca19555308cfa5d20e3aea9b1fcd2c35d49069980bc9ea

See more details on using hashes here.

File details

Details for the file biobear-0.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biobear-0.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb905b2848704b1380630bdfcfb26a6d3f5494fe2032ae373d840d8dc24d4054
MD5 9d58f9a1cdebd955a6363458224f678a
BLAKE2b-256 6a72a120d3709831275ab667836e865880ac807a21cf42be56bcac4099262c11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page