Skip to main content

No project description provided

Project description

Biocarta

Creating Cartographic Representations of Biological Data DOI

Installation

pip install biocarta

Example code

if __name__ == '__main__' :
    from biocarta.quantification import full_mapping
    #
    adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0)
    #
    # WE DO NOT WANT TO KEEP POTENTIALLY BAD ENTRIES 
    adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) ,
                    np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy()
    #
    # READING IN SAMPLE INFORMATION
    # THIS IS NEEDED FOR THE ALIGNED PCA TO WORK
    jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0)
    jdf = jdf.loc[:,adf.columns.values]
    #
    alignment_label , sample_label = 'Disease' , None
    add_labels = ['Cell-line']
    #
    cmd                = 'max'
    # WRITE FILES AND MAKE NOISE
    bVerbose           = True
    # CREATE AN OPTIMIZED REPRESENTATION
    bExtreme           = True
    # WE MIGHT WANT SOME SPECIFIC INTERSECTIONS OF THE HIERARCHY
    n_clusters         = [20,40,60,80,100]
    # USE ALL INFORMATION
    n_components       = None
    umap_dimension     = 2
    n_neighbors        = 20
    local_connectivity = 20.
    transform_seed     = 42
    #
    print ( adf , jdf )
    #
    # distance_type = 'correlation,spearman,absolute' # DONT USE THIS
    distance_type = 'covariation' # BECOMES CO-EXPRESSION BASED
    #
    results = full_mapping ( adf , jdf                  ,
        bVerbose = bVerbose             ,
        bExtreme = bExtreme             ,
        n_clusters = n_clusters         ,
        n_components = n_components     ,
        distance_type = distance_type   ,
        umap_dimension = umap_dimension ,
        umap_n_neighbors = n_neighbors  ,
        umap_local_connectivity = local_connectivity ,
        umap_seed = transform_seed      ,
        hierarchy_cmd = cmd             ,
        add_labels = add_labels         ,
        alignment_label = alignment_label ,
        sample_label = None     )
    #
    map_analytes        = results[0]
    map_samples         = results[1]
    hierarchy_analytes  = results[2]
    hierarchy_samples   = results[3]

or just call it using the default values:

import pandas as pd
import numpy  as np

if __name__ == '__main__' :
    from biocarta.quantification import full_mapping
    #
    adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0)
    #
    adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) ,
                    np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy()
    jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0)
    jdf = jdf.loc[:,adf.columns.values]
    #
    alignment_label , sample_label = 'Disease' , None
    add_labels = ['Cell-line']
    #
    results = full_mapping ( adf , jdf  ,
        bVerbose = True			,
        n_clusters = [40,80,120]        ,
        add_labels = add_labels         ,
        alignment_label = alignment_label )
    #
    map_analytes        = results[0]
    map_samples         = results[1]
    hierarchy_analytes  = results[2]
    hierarchy_samples   = results[3]

and plotting the information of the map analytes yields : Cancer Disease Example

You can also run an alternative algorithm where the UMAP coordinates are employed directly for clustering by setting

    results = full_mapping ( adf , jdf  ,
        bVerbose = True			        ,
        bUseUmap = True                 ,
        n_clusters = [40,80,120]        ,
        add_labels = add_labels         ,
        alignment_label = alignment_label )

with the following results.

Download the zip and open the html index:

chromium index.html

Other generated solutions

The clustering visualisations were created using the Biocarta and hvplot :

What groupings corresponds to biomarker variance that describe them? Here are two visualisations of that:

Diseases : cancers biocarta gfa enrichment biocarta treemap cluster 61

Tissues : tissues

Single Cells: single cells biocarta gfa enrichment biocarta treemap cluster 47

Blood Cells: blood cells biocarta gfa enrichment biocarta treemap cluster 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biocarta-0.2.26.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

biocarta-0.2.26-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file biocarta-0.2.26.tar.gz.

File metadata

  • Download URL: biocarta-0.2.26.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.13

File hashes

Hashes for biocarta-0.2.26.tar.gz
Algorithm Hash digest
SHA256 a6e380fddc49c3401927118caaa637e7e0f089f5a7bea9437f9cf63e178750e4
MD5 fa3d8ce778c1d72e54684301ca750c55
BLAKE2b-256 269f601388ba28e3202fa4f1cad6e6843d0dd17978af91ccc0182a990d5fe7ec

See more details on using hashes here.

File details

Details for the file biocarta-0.2.26-py3-none-any.whl.

File metadata

  • Download URL: biocarta-0.2.26-py3-none-any.whl
  • Upload date:
  • Size: 20.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.13

File hashes

Hashes for biocarta-0.2.26-py3-none-any.whl
Algorithm Hash digest
SHA256 6541a3840a81f45bd4d918ca7b4a24aae5e72040f74b92c7bb30aeb53166aae7
MD5 ef9f1749e13a16ba865e4e585074b53b
BLAKE2b-256 1fca566855cf2995af6499afd91eae98da85ce05a3bb758de68141f5fe012ca9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page