Skip to main content

A set of python modules for accessing BioTuring ecosystem on BioColab private server

Project description

1. Usage biocolabsdk:

The package only allows data submission via BioColab private server. Please configure your tokens in the User Settings page.

1.1. Test the connection:

# example.py

from biocolabsdk.connector import EConnector

connector = EConnector(
  host="https://yourcompany/t2d_index_tool/,
  token="<input your token here>"
)

connector.get_bbrowserx().test_connection()

Example output:

Connecting to host at https://yourcompany/t2d_index_tool/api/v1/test_connection
Connection successful

1.2. Get user groups available for your token:

# example.py

from biocolabsdk.connector import EConnector

connector = EConnector(
  host="https://yourcompany/t2d_index_tool/,
  token="<input your token here>"
)

user_groups = connector.get_bbrowserx().get_user_groups()
print(user_groups)

Example output:

[{'id': 'all_members', 'name': 'All members'}, {'id': 'personal', 'name': 'Personal workspace'}]

1.3. Submit h5ad (scanpy object):

# example.py
from biocolabsdk.connector import EConnector
from bioturing_connector.typing import InputMatrixType
from bioturing_connector.typing import Species

connector = EConnector(
  host="https://yourcompany/t2d_index_tool/,
  token="<input your token here>"
)

# Call this function first to get available groups and their id.
user_groups = connector.get_bbrowserx().get_user_groups()
# Example: user_groups is now [{'id': 'all_members', 'name': 'All members'}, {'id': 'personal', 'name': 'Personal workspace'}]


# Submitting the scanpy object:
connector.submit_h5ad(
  group_id='personal',
  study_s3_keys=['GSE128223.h5ad'],
  study_id='GSE128223',
  name='This is my first study',
  authors=['Huy Nguyen'],
  species=Species.HUMAN.value,
  input_matrix_type=InputMatrixType.RAW.value
)

# Example output:
> [2022-10-10 01:03] Waiting in queue
> [2022-10-10 01:03] Downloading GSE128223.h5ad from s3: 262.1 KB / 432.8 MB
> [2022-10-10 01:03] File downloaded
> [2022-10-10 01:03] Reading batch: GSE128223.h5ad
> [2022-10-10 01:03] Preprocessing expression matrix: 19121 cells x 63813 genes
> [2022-10-10 01:03] Filtered: 19121 cells remain
> [2022-10-10 01:03] Start processing study
> [2022-10-10 01:03] Normalizing expression matrix
> [2022-10-10 01:03] Running PCA
> [2022-10-10 01:03] Running kNN
> [2022-10-10 01:03] Running spectral embedding
> [2022-10-10 01:03] Running venice binarizer
> [2022-10-10 01:04] Running t-SNE
> [2022-10-10 01:04] Study was successfully submitted
> [2022-10-10 01:04] DONE !!!
> Study submitted successfully!

Available parameters for submit_h5ad function:

group_id: str
  ID of the group to submit the data to.

study_s3_keys: List[str]
  List of the s3 key of the studies.

study_id: str, default=None
  Study ID, if no value is specified, use a random uuidv4 string

name: str, default='To be detailed'
  Name of the study.

authors: List[str], default=[]
  Authors of the study.

abstract: str, default=''
  Abstract of the study.

species: str, default='human'
  Species of the study. Can be: **bioturing_connector.typing.Species.HUMAN.value** or **bioturing_connector.typing.Species.MOUSE.value** or **bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value**

input_matrix_type: str, default='raw'
  If the value of this input is **bioturing_connector.typing.InputMatrixType.NORMALIZED.value**,
  then the software will
  use slot 'X' from the scanpy object and does not apply normalization.
  If the value of this input is **bioturing_connector.typing.InputMatrixType.RAW.value**,then the software will
  use slot 'raw.X' from thescanpy object and apply log-normalization.

min_counts: int, default=None
  Minimum number of counts required
  for a cell to pass filtering.

min_genes: int, default=None
  Minimum number of genes expressed required
  for a cell to pass filtering.

max_counts: int, default=None
  Maximum number of counts required
  for a cell to pass filtering.

max_genes: int, default=None
  Maximum number of genes expressed required
  for a cell to pass filtering.

mt_percentage: Union[int, float], default=None
  Maximum number of mitochondria genes percentage
  required for a cell to pass filtering. Ranging from 0 to 100

2. Usage bioflex:

Create a connection using access token:

from biocolabsdk.connector import EConnector

connector = EConnector(
  public_token="<input your token here>"
)

List available databases:

databases = connection.get_bioflex().databases()
[DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=1),
DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=2),
DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=3)]

Get database cell types gene expression summary

database = databases[2]
database.get_celltypes_expression_summary(['CD3D', 'CD3E'])
{'CD3D': [Summary(name="B cell",sum=707108874.0,mean=4192.7096,rate=0.035,count=168652.0,total=4812967),
	Summary(name="CD4-positive, alpha-beta T cell",sum=9489987442.0,mean=4657.5619,rate=0.5283,count=2037544.0,total=3856590),
	...
	Summary(name="corneal progenitor",sum=0.0,mean=0.0,rate=0.0,count=0.0,total=3973),
	Summary(name="nucleus pulposus progenitor cell",sum=0.0,mean=0.0,rate=0.0,count=0.0,total=2310)]}

Create study instance, using study hash ID from BioTuring studies:

study = database.get_study('GSE96583_batch2')
study
Study(id="GSE96583_batch2",
      title="Multiplexed droplet single-cell RNA-sequencing using natural genetic variation (Batch 2)",
      reference="https://www.nature.com/articles/nbt.4042")

Take a peek at study metadata:

study.metalist
[Metadata(id=0,name="Number of mRNA transcripts",type="Numeric"),
 Metadata(id=1,name="Number of genes",type="Numeric"),
 Metadata(id=2,name="Batch id",type="Category"),
 Metadata(id=3,name="Stimulation",type="Category"),
 Metadata(id=4,name="Author's cell type",type="Category")]

Fetch a study metadata:

metadata = study.metalist[4]
metadata
Metadata(id=4,name="Author's cell type",type="Category")
metadata.fetch()
metadata.values
array(['CD8 T cells', 'Dendritic cells', 'CD4 T cells', ...,
       'CD8 T cells', 'B cells', 'CD4 T cells'], dtype='<U17')

Query genes:

exp_mtx = study.query_genes(['CD3D', 'CD3E'], bioflex.UNIT_LOGNORM)
exp_mtx
<29065x2 sparse matrix of type '<class 'numpy.float32'>'
    with 15492 stored elements in Compressed Sparse Column format>

Get study barcodes:

study.barcodes()
['GSM2560249_AAACATACCAAGCT-1',
 'GSM2560249_AAACATACCCCTAC-1',
 ...
 'GSM2560249_AATTGTGATTCACT-1',
 'GSM2560249_AATTGTGATTTCGT-1',
 ...]

Get study features:

study.features()
['5S_RRNA',
 '5_8S_RRNA',
 ...
 'AC006273',
 'AC006277',
 ...]

Get study full matrix:

study.matrix(bioflex.UNIT_LOGNORM)
<29065x64642 sparse matrix of type '<class 'numpy.float32'>'
	with 17570739 stored elements in Compressed Sparse Column format>

Export Study:

study.export_study(bioflex.EXPORT_H5AD)
{'download_link': 'https://talk2data.bioturing.com/api/export/a1003bad3dd146b28c7bda913a2fc3f0',
'study_hash_id': 'GSE96583_batch2'}

For further information please check the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biocolabsdk-1.0.1.tar.gz (4.7 kB view hashes)

Uploaded Source

Built Distribution

biocolabsdk-1.0.1-py3-none-any.whl (5.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page