Skip to main content

A metric learning toolkit

Project description

BioEncoder

BioEncoder is a tool box for image classification and trait discovery in organismal biology. It relies on image classification models trained using metric learning to learn species trait data (i.e., features) from images. This implementation is based on SupCon and timm-vis.

Features

  • Taxon-agnostic dataloaders (making it applicable to any dataset - not just biological ones)
  • Support of timm models, and pytorch-optimizer
  • Access to state-of-the-art metric losses, such as Supcon and Sub-center ArcFace.
  • Exponential Moving Average for stable training, and Stochastic Moving Average for better generalization and performance.
  • LRFinder for the second stage of the training.
  • Easy customization of hyperparameters, including augmentations, through YAML configs (check the config-templates folder for examples)
  • Custom augmentations techniques via albumentations
  • TensorBoard logs and checkpoints (soon to come: WandB integration)
  • Streamlit app with rich model visualizations (e.g., Grad-CAM)
  • Interactive t-SNE and PCA plots using Bokeh

Quickstart

(for more detailed information consult the help files)

1. Install BioEncoder (into a virtual environment with pytorch/CUDA):

pip install bioencoder

2. Download example dataset from the data repo: https://zenodo.org/records/10909614/files/BioEncoder-data.zip. This archive contains the images and configuration files needed for step 3/4, as well as the final model checkpoints and a script to reproduce the results and figures presented in the paper. To play around with theinteractive figures and the model explorer you can also skip the training / SWA steps.

3. Start interactive session (e.g., in Spyder or VS code) and run the following commands one by one:

## use "overwrite=True to redo a step

import bioencoder

## global setup
bioencoder.configure(root_dir=r"bioencoder_wd", run_name="v1")

## split dataset
bioencoder.split_dataset(image_dir=r"~/Downloads/damselflies-aligned-trai_val", max_ratio=6, random_seed=42)

## train stage 1
bioencoder.train(config_path=r"bioencoder_configs/train_stage1.yml")
bioencoder.swa(config_path=r"bioencoder_configs/swa_stage1.yml")

## explore embedding space and model from stage 1
bioencoder.interactive_plots(config_path=r"bioencoder_configs/plot_stage1.yml")
bioencoder.model_explorer(config_path=r"bioencoder_configs/explore_stage1.yml")

## (optional) learning rate finder for stage 2
bioencoder.lr_finder(config_path=r"bioencoder_configs/lr_finder.yml")

## train stage 2
bioencoder.train(config_path=r"bioencoder_configs/train_stage2.yml")
bioencoder.swa(config_path=r"bioencoder_configs/swa_stage2.yml")

## explore model from stage 2
bioencoder.model_explorer(config_path=r"bioencoder_configs/explore_stage2.yml")

4. Alternatively, you can directly use the command line interface:

## use the flag "--overwrite" to redo a step

bioencoder_configure --root-dir bioencoder_wd --run-name v1
bioencoder_split_dataset --image-dir "~/Downloads/damselflies-aligned-trai_val" --max-ratio 6 --random-seed 42
bioencoder_train --config-path "bioencoder_configs/train_stage1.yml"
bioencoder_swa --config-path "bioencoder_configs/swa_stage1.yml"
bioencoder_interactive_plots --config-path "bioencoder_configs/plot_stage1.yml"
bioencoder_model_explorer --config-path "bioencoder_configs/explore_stage1.yml"
bioencoder_lr_finder --config-path "bioencoder_configs/lr_finder.yml"
bioencoder_train --config-path "bioencoder_configs/train_stage2.yml"
bioencoder_swa --config-path "bioencoder_configs/swa_stage2.yml"
bioencoder_model_explorer --config-path "bioencoder_configs/explore_stage2.yml"

Citation

Please cite BioEncoder as follows:

@UNPUBLISHED{Luerig2024-ov,
  title    = "{BioEncoder}: a metric learning toolkit for comparative
              organismal biology",
  author   = "Luerig, Moritz D and Di Martino, Emanuela and Porto, Arthur",
  journal  = "bioRxiv",
  pages    = "2024.04.03.587987",
  month    =  apr,
  year     =  2024,
  language = "en",
  doi      = "10.1101/2024.04.03.587987"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bioencoder-0.2.0.tar.gz (38.1 kB view details)

Uploaded Source

Built Distribution

bioencoder-0.2.0-py3-none-any.whl (47.8 kB view details)

Uploaded Python 3

File details

Details for the file bioencoder-0.2.0.tar.gz.

File metadata

  • Download URL: bioencoder-0.2.0.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for bioencoder-0.2.0.tar.gz
Algorithm Hash digest
SHA256 975671e572ea6cfa5142289f9a6a34b63eb30ca658dba033c2cdf2e793982c0f
MD5 c122becab43b187acc4eed1e1b96d386
BLAKE2b-256 cc9811f795c14b8e4a22cb61951a487ad417c99315f9f460e3278082864239a0

See more details on using hashes here.

File details

Details for the file bioencoder-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: bioencoder-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 47.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for bioencoder-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a4001e23acf1f61bbfdbee0987346bf71efb17f4ba5f1a2e5be009288eacac1c
MD5 ea3552a1dcca9c619112af8dd91eeab4
BLAKE2b-256 a002fa80a4b1616f3d745ebd6d36a7f7a1e71134186d6756393699ec27b3fc31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page