Skip to main content

A metric learning toolkit

Project description

BioEncoder

BioEncoder is a tool box for image classification and trait discovery in organismal biology. It relies on image classification models trained using metric learning to learn species trait data (i.e., features) from images. This implementation is based on SupCon and timm-vis.

Preprint on BioRxiv: https://doi.org/10.1101/2024.04.03.587987

Features

  • Taxon-agnostic dataloaders (making it applicable to any dataset - not just biological ones)
  • Support of timm models, and pytorch-optimizer
  • Access to state-of-the-art metric losses, such as Supcon and Sub-center ArcFace.
  • Exponential Moving Average for stable training, and Stochastic Moving Average for better generalization and performance.
  • LRFinder for the second stage of the training.
  • Easy customization of hyperparameters, including augmentations, through YAML configs (check the config-templates folder for examples)
  • Custom augmentations techniques via albumentations
  • TensorBoard logs and checkpoints (soon to come: WandB integration)
  • Streamlit app with rich model visualizations (e.g., Grad-CAM)
  • Interactive t-SNE and PCA plots using Bokeh

Quickstart

(for more detailed information consult the help files)

1. Install BioEncoder (into a virtual environment with pytorch/CUDA):

pip install bioencoder

2. Download example dataset from the data repo: https://zenodo.org/records/10909614/files/BioEncoder-data.zip. This archive contains the images and configuration files needed for step 3/4, as well as the final model checkpoints and a script to reproduce the results and figures presented in the paper. To play around with theinteractive figures and the model explorer you can also skip the training / SWA steps.

3. Start interactive session (e.g., in Spyder or VS code) and run the following commands one by one:

## use "overwrite=True to redo a step

import bioencoder

## global setup
bioencoder.configure(root_dir=r"~/bioencoder_wd", run_name="v1")

## split dataset
bioencoder.split_dataset(image_dir=r"~/Downloads/damselflies-aligned-trai_val", max_ratio=6, random_seed=42)

## train stage 1
bioencoder.train(config_path=r"bioencoder_configs/train_stage1.yml")
bioencoder.swa(config_path=r"bioencoder_configs/swa_stage1.yml")

## explore embedding space and model from stage 1
bioencoder.interactive_plots(config_path=r"bioencoder_configs/plot_stage1.yml")
bioencoder.model_explorer(config_path=r"bioencoder_configs/explore_stage1.yml")

## (optional) learning rate finder for stage 2
bioencoder.lr_finder(config_path=r"bioencoder_configs/lr_finder.yml")

## train stage 2
bioencoder.train(config_path=r"bioencoder_configs/train_stage2.yml")
bioencoder.swa(config_path=r"bioencoder_configs/swa_stage2.yml")

## explore model from stage 2
bioencoder.model_explorer(config_path=r"bioencoder_configs/explore_stage2.yml")

4. Alternatively, you can directly use the command line interface:

## use the flag "--overwrite" to redo a step

bioencoder_configure --root-dir "~/bioencoder_wd" --run-name v1
bioencoder_split_dataset --image-dir "~/Downloads/damselflies-aligned-trai_val" --max-ratio 6 --random-seed 42
bioencoder_train --config-path "bioencoder_configs/train_stage1.yml"
bioencoder_swa --config-path "bioencoder_configs/swa_stage1.yml"
bioencoder_interactive_plots --config-path "bioencoder_configs/plot_stage1.yml"
bioencoder_model_explorer --config-path "bioencoder_configs/explore_stage1.yml"
bioencoder_lr_finder --config-path "bioencoder_configs/lr_finder.yml"
bioencoder_train --config-path "bioencoder_configs/train_stage2.yml"
bioencoder_swa --config-path "bioencoder_configs/swa_stage2.yml"
bioencoder_model_explorer --config-path "bioencoder_configs/explore_stage2.yml"

Citation

Please cite BioEncoder as follows:

@UNPUBLISHED{Luerig2024-ov,
  title    = "{BioEncoder}: a metric learning toolkit for comparative
              organismal biology",
  author   = "Luerig, Moritz D and Di Martino, Emanuela and Porto, Arthur",
  journal  = "bioRxiv",
  pages    = "2024.04.03.587987",
  month    =  apr,
  year     =  2024,
  language = "en",
  doi      = "10.1101/2024.04.03.587987"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bioencoder-0.2.1.tar.gz (38.3 kB view details)

Uploaded Source

Built Distribution

bioencoder-0.2.1-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file bioencoder-0.2.1.tar.gz.

File metadata

  • Download URL: bioencoder-0.2.1.tar.gz
  • Upload date:
  • Size: 38.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for bioencoder-0.2.1.tar.gz
Algorithm Hash digest
SHA256 32839ce556258e6c1b72cd943946b05ab43e74647f42cd0f3451202b3dceac8f
MD5 dc7b46a98963b3a30201aa0a0f9e945b
BLAKE2b-256 94b541660b076628ddbfddcacec6de6a5a754eb4be5431baa9974037b57a92c5

See more details on using hashes here.

File details

Details for the file bioencoder-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: bioencoder-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 47.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for bioencoder-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d44d3e9d2ee82bbd03bdd490ca3a35778c2f3e0e0903c49813fb839989f61d43
MD5 4f5a58018a8c749ec6922288c736808c
BLAKE2b-256 051095fb87f1c88a5428204117c5cc27bf2e16f91d21240e72bdc0d9b32e2f34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page