Skip to main content

A set of python modules for accessing BioTuring single-cell database

Project description

bioflex: Python package for calling BioTuring API

bioflex allows scientists to use simple yet powerful commands to retrieve gene expression data,
cell metadata from thousands of single-cell studies in BioTuring Database.

Installation

pip install bioflex

For access token, register at BioTuring Data Science

Requirements

Examples

Create a connection using access token:

import bioflex
connection = bioflex.connect('70d2acfda3a54ca6a4390699394****')

List available databases:

databases = connection.databases()
[DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=1),
DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=2),
DataBase(id="5010c7d573ae4ff2b9691422b99aa2cd",
          name="BioTuring database",species="human",version=3)]

Get database cell types gene expression summary

database = databases[2]
database.get_celltypes_expression_summary(['CD3D', 'CD3E'])
{'CD3D': [Summary(name="B cell",sum=707108874.0,mean=4192.7096,rate=0.035,count=168652.0,total=4812967),
	Summary(name="CD4-positive, alpha-beta T cell",sum=9489987442.0,mean=4657.5619,rate=0.5283,count=2037544.0,total=3856590),
	...
	Summary(name="corneal progenitor",sum=0.0,mean=0.0,rate=0.0,count=0.0,total=3973),
	Summary(name="nucleus pulposus progenitor cell",sum=0.0,mean=0.0,rate=0.0,count=0.0,total=2310)]}

Create study instance, using study hash ID from BioTuring studies:

study = database.get_study('GSE96583_batch2')
study
Study(id="GSE96583_batch2",
      title="Multiplexed droplet single-cell RNA-sequencing using natural genetic variation (Batch 2)",
      reference="https://www.nature.com/articles/nbt.4042")

Take a peek at study metadata:

study.metalist
[Metadata(id=0,name="Number of mRNA transcripts",type="Numeric"),
 Metadata(id=1,name="Number of genes",type="Numeric"),
 Metadata(id=2,name="Batch id",type="Category"),
 Metadata(id=3,name="Stimulation",type="Category"),
 Metadata(id=4,name="Author's cell type",type="Category")]

Fetch a study metadata:

metadata = study.metalist[4]
metadata
Metadata(id=4,name="Author's cell type",type="Category")
metadata.fetch()
metadata.values
array(['CD8 T cells', 'Dendritic cells', 'CD4 T cells', ...,
       'CD8 T cells', 'B cells', 'CD4 T cells'], dtype='<U17')

Query genes:

exp_mtx = study.query_genes(['CD3D', 'CD3E'], bioflex.UNIT_LOGNORM)
exp_mtx
<29065x2 sparse matrix of type '<class 'numpy.float32'>'
    with 15492 stored elements in Compressed Sparse Column format>

Get study barcodes:

study.barcodes()
['GSM2560249_AAACATACCAAGCT-1',
 'GSM2560249_AAACATACCCCTAC-1',
 ...
 'GSM2560249_AATTGTGATTCACT-1',
 'GSM2560249_AATTGTGATTTCGT-1',
 ...]

Get study features:

study.features()
['5S_RRNA',
 '5_8S_RRNA',
 ...
 'AC006273',
 'AC006277',
 ...]

Get study full matrix:

study.matrix(bioflex.UNIT_LOGNORM)
<29065x64642 sparse matrix of type '<class 'numpy.float32'>'
	with 17570739 stored elements in Compressed Sparse Column format>

Export Study:

study.export_study(bioflex.EXPORT_H5AD)
{'download_link': 'https://talk2data.bioturing.com/api/export/a1003bad3dd146b28c7bda913a2fc3f0',
'study_hash_id': 'GSE96583_batch2'}

For further information please check the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bioflex-1.1.1.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

bioflex-1.1.1-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file bioflex-1.1.1.tar.gz.

File metadata

  • Download URL: bioflex-1.1.1.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for bioflex-1.1.1.tar.gz
Algorithm Hash digest
SHA256 9d6e4ba9f92dac3e418f9e0577c1cccda2afd4a613d757470bd7021d363fa676
MD5 fc384a2b3f08680c09708b28211d3335
BLAKE2b-256 8339e6ca99181ac3986034a377ab5b78b62776d455cf8d7942c5c8ebb66c7667

See more details on using hashes here.

File details

Details for the file bioflex-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: bioflex-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for bioflex-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 783a430d78155c155812f43b14b90286be7ceed04e7475fbf762bcf21afcd8e9
MD5 493e735e2003e681997ea32fedbf20d1
BLAKE2b-256 8ebe5a0b8fff3049e9e7d9b0b0fe3eb6ef9bbbe65dca158896edfb62dfbe05f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page