Skip to main content

A Python Framework for Modeling and Analysis of Signaling Systems

Project description

BioMASS

Actions Status Documentation Status PyPI version License Downloads PyPI pyversions Language grade: Python Code style: black

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on producing models to describe dynamical cellular signaling systems, most of these models are limited and do not cover multiple pathways. Therefore, there is a challenge to combine these models to enable understanding at a larger scale. Nevertheless, larger network means that it gets more difficult to estimate parameters to reproduce dynamic experimental data needed for deeper understanding of a system.

To overcome this problem, we developed BioMASS, a Python framework for Modeling and Analysis of Signaling Systems. The BioMASS framework allows efficient optimization of multiple parameter sets simultaneously and generates the multiple parameter candidates that explain the signaling dynamics of interest. These parameter candidates can be further evaluated by their distribution and sensitivity analysis as a part of alternative information about the hidden regulatory mechanism of the system.

Features

  • Parameter estimation of ODE models
  • Local sensitivity analysis
  • Effective visualization of simulation results

Documentation

Online documentation is available at https://biomass-core.readthedocs.io/.

Installation

The BioMASS library is available at the Python Package Index (PyPI).

$ pip install biomass

BioMASS supports Python 3.7 or newer.

Also, we provide BioMASS docker images on DockerHub.

Example

Parameter estimation

from biomass import Model, optimize
from biomass.models import Nakakuki_Cell_2010

model = Model(Nakakuki_Cell_2010.__package__).create()

optimize(model, x_id=range(1, 11))

estimated_parameter_sets

from biomass import run_simulation

run_simulation(model, viz_type="average", stdev=True)

simulation_average Points (blue diamonds, EGF; red squares, HRG) denote experimental data, solid lines denote simulations.

Sensitivity analysis

from biomass import run_analysis

run_analysis(model, target="reaction", metric="integral", style="barplot")

sensitivity_PcFos

Control coefficients for integrated pc-Fos are shown by bars (blue, EGF; red, HRG). Numbers above bars indicate the reaction indices, and error bars correspond to simulation standard deviation.

Citation

When using BioMASS, please cite the following paper:

  • Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers 12, 2878 (2020). https://doi.org/10.3390/cancers12102878

Author

Hiroaki Imoto

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biomass-0.5.3.tar.gz (72.6 kB view details)

Uploaded Source

Built Distribution

biomass-0.5.3-py3-none-any.whl (97.6 kB view details)

Uploaded Python 3

File details

Details for the file biomass-0.5.3.tar.gz.

File metadata

  • Download URL: biomass-0.5.3.tar.gz
  • Upload date:
  • Size: 72.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for biomass-0.5.3.tar.gz
Algorithm Hash digest
SHA256 66b283a21ea79bab8e57b7284dcb1c2b16d8b6633bfdb51de436b7897acd5386
MD5 08cd46331853c8608bbc654a3d4c1374
BLAKE2b-256 cbc93d0d84f089ef9d732c0b62c1734930e79e827fdbf0608da64535806035b2

See more details on using hashes here.

File details

Details for the file biomass-0.5.3-py3-none-any.whl.

File metadata

  • Download URL: biomass-0.5.3-py3-none-any.whl
  • Upload date:
  • Size: 97.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for biomass-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 46006aeae11eb6ac842d1cea18db1bf16b80449603e55cbb18caf6512ba67867
MD5 56cc8e05fa8554fd806b9351f154bb6e
BLAKE2b-256 264065b65c3896b766b80d3a6019b722b651c182aa336c3f93db2d23ac3e93df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page