Skip to main content

No project description provided

Project description

Biometeo

This package is applied to calculate thermal indicators for human biometeorology. The available thermal indicators are:

  • Physiological Equivalent Temperature (PET)
  • modified Physiological Equivalent Temperature (mPET)
  • Predicted Mean Vote (PMV)
  • Standard Effective Temperature* (SET*)
  • Universal Thermal Climate Index (UTCI) An additional function named Tmrt_calc is appended in the package to calculate Tmrt from part of original RayMan model code. The simplest approach is only the given solar constant which is related to the local target time and coordinate information including longitude, latitude, and elevation above sea level. The more accurate approach adds global radiation or cloud cover ratio as a variable, while the third approach also includes respectively or assembly additional variables, such as sky view factor, diffuse radiation, and fish eye photo.

Installation

$ pip install biometeo

Usage

>>> import biometeo
>>> biometeo.mPET(Ta=25, VP=1000, Tmrt=10, v=0)
{'mPET': 20.058999999999866, 'Tcore': 36.56291404743782, 'Tsk_mm': 27.783887684830514, 'Tcl': 26.14411160697839, 'vpts': 29.47963395940036, 'wetsk': 1.0, 'icl': 0.4566093750000002, 'sk_wetted_mm': 0.4394076400546515, 'metabolic_rate': 148.0444953458826, 'wet_sum': 1.6077299882974372, 'convective_flux': 1.683534767054222, 'radiative_flux': -118.78405426047928, 'respiratory_flux': -8.226275136496405, 'energy_balance': 24.325430704258586}

>>> biometeo.Tmrt_calc(Ta=25, RH=10, v=0, longitude=25, latitude=100, sea_level_height=2)
{'Tmrt': 14.796488889048646, 'VP': 3.1620239690859724, 'Imax': 28.629196494701546, 'Gmax': 53.80503898831193, 'Dmax': 25.175842493610382, 'Itat': 28.629196494701546, 'Gtat': 53.80503898831193, 'A': 311.10490647667797, 'Eu': 419.4826669406604, 'Es': 441.198660290955, 'Tob': 21.122122697010358}

>>> biometeo.PMV(Ta=25, VP=1000, v=0, Tmrt=10)
{'PMV': 17.792051916371374, 'Teq': 605.45449764547, 'hclo': 122.70790874039338}

>>> biometeo.VP_RH_exchange(Ta=25, VP=1000)
{'RH': 3162.5313716045744}

>>> biometeo.UTCI(Ta=20.0, VP=12.5, v=0.341, Tmrt=20.0)
20.00801686910818

Input and Outputs

Fundmental inputs Optional inputs Defaults Outputs
Tmrt_calc Ta, RH, v1.1m, longitude, latitude, sea_level_height day_of_year, hour_of_day, timezone_offset, N, G, DGratio, Tob, ltf, alb, albhum, RedGChk, foglimit, bowen" now time, N=0, OmegaF=1.0, alb=0.3, albhum=0.3, RedGChk=False, foglimit=90, bowen=1.0 {Tmrt, VP, Imax, Gmax, Dmax, Itat, Gtat, A, Eu, Es, Tob}
VP_RH_exchange Ta, VP or RH {VP} or {RH}
v1m_cal WS, height v1.1m
PMV Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex icl=0.6, work=80, ht=1.75, mbody=75, age=35, sex=1 (male) {PMV, Teq, hclo}
SET* Ta, RH, v1.1m, Tmrt icl, work, ht, mbody icl=0.9, work=80, ht=1.75, mbody=75 SET*
PET Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex, pos icl=0.9, work=80, ht=1.75, mbody=75, age=35, sex=1(male), pos=1 (stand) {PET, Tcore, Tsk, Tcl, wetsk, metabolic_rate, respiratory_flux, convective_flux, radiative_flux, diffuse_flux, sweating_flux}
mPET Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex, pos, auto_clo icl=0.9, work=80, ht=1.75, mbody=75, age=35, sex=1(male), pos=1 (stand), auto_clo=True {mPET, Tcore, Tsk_mm, 'Tcl, ‘vpts, wetsk, icl, sk_wetted_mm, metabolic_rate, wet_sum, convective_flux, radiative_flux, respiratory_flux, energy_balance}
UTCI Ta, VP, v1.1m, Tmrt UTCI

Citation

The citation about Python package biometeo is still under reviewing. For use of the function or thermal indices in biometeo. The following citations are suggested. For applying Universal Thermal Climate Index (UTCI), the following scientific reports are suggested to be cited.

For calculation of Predicted Mean Vote (PMV), the following paper should be informed.

For using Outdoor Standard Effective Temperature (SET*), the following manuscript is suggested to be cited.

For application of Physiologically Equivalent Temperature (PET), the following paper is highly recommended to be cited.

  • Höppe, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43, 71–75 (1999). http://link.springer.com/10.1007/s004840050118 .

For application of modified Physiologically Equivalent Temperature (mPET), the following papers are highly suggested to be cited.

For simulation of mean radiant temperature (Tmrt), the following two papers explain the mechanisms of Tmrt simulation in RayMan and also in Python package biometeo.

  • Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the rayman model. International Journal of Biometeorology 51, 323–334 (2007). https://doi.org/10.1007/s00484-006-0061-8 .
  • Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the rayman model. International Journal of Biometeorology 54, 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0 .

For using exponent equation as reducing mechanism of wind speed from some height to 1.1 m, the following is the original literature.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

biometeo-0.2.9-cp311-cp311-win_amd64.whl (539.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

biometeo-0.2.9-cp310-cp310-win_amd64.whl (534.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

biometeo-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biometeo-0.2.9-cp310-cp310-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

biometeo-0.2.9-cp39-cp39-win_amd64.whl (547.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

biometeo-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

biometeo-0.2.9-cp39-cp39-macosx_12_0_arm64.whl (907.1 kB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

biometeo-0.2.9-cp39-cp39-macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

biometeo-0.2.9-cp38-cp38-win_amd64.whl (599.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

biometeo-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

biometeo-0.2.9-cp38-cp38-macosx_12_0_arm64.whl (870.2 kB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

biometeo-0.2.9-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file biometeo-0.2.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.2.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 539.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for biometeo-0.2.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6d580f9d8891fb2c4e9ec85c3323b9174ae156d2d9ad777ef5aa6ef0ab404f15
MD5 b0c2e62b051654cf33aa6b20c2c7f4ea
BLAKE2b-256 92f11f8f46a1b4ab6a87b3c786692f17c4497654d596fbe33a8fb34abd6f774c

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.2.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 534.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for biometeo-0.2.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2daa2c80a136f988d351b45048f66033d08e4874237a5bfe06094c792b03b995
MD5 f0f9f156952b7b76c050420caaa8f00e
BLAKE2b-256 bbab7c04ec9dbf3b178b6579c476d90eee18bf0315fea4b5ed9f0d66c698d8b1

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 690c0dd936e982db162f135ddc30dfa1d59badffc9af22645ac4978c9840057c
MD5 447cbe53d180c7f44213cd05d96cbe6b
BLAKE2b-256 3f289be677b79009c119490bf0a97d5d0a672191a647b3ee254f3da16a136cfb

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8c86a94a94c7b573092b5ca19aa59929c1368f64339f2c405289adb72d7807a3
MD5 1d2df77bc056f103abd33178600bd126
BLAKE2b-256 722c7f9c36975d144032591b5dc5f5375155c3c8ec0525e3db2cc384ea90c713

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.2.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 547.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for biometeo-0.2.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7c46dc369cb7304d1e32f0f71eb4626643ac124c696766e821dc041675d398f4
MD5 1a565bf659c9df1d4e69083f1496d5d7
BLAKE2b-256 2f1c7554fc852c6966e64332a31c69aa885bdc714fe75c94030ef517a5d1df0e

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e998c2fab7905809b8952fbe9395897d8c57eb111231605d8d329d2ac41443fe
MD5 a472f9f3a536a31de54b2e20789c62f1
BLAKE2b-256 f9a7e7ed7dcd0a60cc0d03e8b022547d6b04ac57e30171709d39202eedb0c0da

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0bd90495f850cb3f8b594b2afe539730d97139e2b3a83f1a6deb5c2705b1ebc1
MD5 cbb33e29f57aa7d74449fae8cab387a0
BLAKE2b-256 4c3d007f8b12efb4878996df576f69e9b7aea4f19a39e2dc09d56b103f152e9d

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6187b871df5563045d82fa4b2d8fb273ac92d9b689ad330697fc041ec1a98c1
MD5 f46d564aa4c26c0204f45c42790741e5
BLAKE2b-256 b7abca271a0e9c680844c497dda0641218e0034540b585cdaee4fe768642f8cd

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.2.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 599.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for biometeo-0.2.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 13f29a2e0d7adbadca1fa1f7d7548e20df90d89625e2daf80e56d1485a9e34b2
MD5 a67da329dafb914549b59994b74af3b8
BLAKE2b-256 c84a47a360099683007e43b9c42925bdfe2884bfa6d10df921115057f9938a94

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1df6164c0d0117f00d93d99309754a555757215df8bddeb53a3c818f3eef5ece
MD5 b6ba7baee8e2722dd0ac60aacd8dc644
BLAKE2b-256 e04058e4b5a562c2ebbec1c6b15837c0736e4450bdbeb81f418d8b4ee9181ad6

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bff2328e5a7df74ef5b1cfbe624c552a81962bbfcec89fa72866770e012b3c56
MD5 339be899598b4c5f72b5f6f66cb84095
BLAKE2b-256 abb8ec29e152b69001a3aac6a3000c0f6ca52a5af99e1d278e0daad739da3e40

See more details on using hashes here.

File details

Details for the file biometeo-0.2.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.2.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08815ad5d362f96ebfb7483451db0f5b198b21923eafc1a3c01c75b3396abff2
MD5 84ec50fe5746ba343ee5e3f5696b2fce
BLAKE2b-256 a650da60cc8f9181c0e98cd84e613e3a5b8770f9e3be72cf249d28517e1c913a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page