Skip to main content

This package is applied to calculate thermal indicators for human biometeorology. The available thermal indicators are Physiological Equivalent Temperature (PET), modified Physiological Equivalent Temperature (mPET), Predicted Mean Vote (PMV), Standard Effective Temperature* (SET*) and Universal Thermal Climate Index (UTCI) in this package. An additional function named GlobalRadiation_Tmrt is appended in the package for applying G, N, and Omega to calculate Tmrt from part of original RayMan model code.

Project description

Biometeo

This package is applied to calculate thermal indicators for human biometeorology. The available thermal indicators are:

  • Physiological Equivalent Temperature (PET)
  • modified Physiological Equivalent Temperature (mPET)
  • Predicted Mean Vote (PMV)
  • Standard Effective Temperature* (SET*)
  • Universal Thermal Climate Index (UTCI) An additional function named Tmrt_calc is appended in the package to calculate Tmrt from part of original RayMan model code. The simplest approach is only the given solar constant which is related to the local target time and coordinate information including longitude, latitude, and elevation above sea level. The more accurate approach adds global radiation or cloud cover ratio as a variable, while the third approach also includes respectively or assembly additional variables, such as sky view factor, diffuse radiation, and fish eye photo.

Installation

$ pip install biometeo

Usage

>>> import biometeo
>>> biometeo.mPET(Ta=25, VP=1000, Tmrt=10, v=0)
{'mPET': 20.058999999999866, 'Tcore': 36.56291404743782, 'Tsk_mm': 27.783887684830514, 'Tcl': 26.14411160697839, 'vpts': 29.47963395940036, 'wetsk': 1.0, 'icl': 0.4566093750000002, 'sk_wetted_mm': 0.4394076400546515, 'metabolic_rate': 148.0444953458826, 'wet_sum': 1.6077299882974372, 'convective_flux': 1.683534767054222, 'radiative_flux': -118.78405426047928, 'respiratory_flux': -8.226275136496405, 'energy_balance': 24.325430704258586}

>>> biometeo.Tmrt_calc(Ta=25, RH=10, v=0, longitude=25, latitude=100, sea_level_height=2)
{'Tmrt': 14.796488889048646, 'VP': 3.1620239690859724, 'Imax': 28.629196494701546, 'Gmax': 53.80503898831193, 'Dmax': 25.175842493610382, 'Itat': 28.629196494701546, 'Gtat': 53.80503898831193, 'A': 311.10490647667797, 'Eu': 419.4826669406604, 'Es': 441.198660290955, 'Tob': 21.122122697010358}

>>> biometeo.PMV(Ta=25, VP=1000, v=0, Tmrt=10)
{'PMV': 17.792051916371374, 'Teq': 605.45449764547, 'hclo': 122.70790874039338}

>>> biometeo.VP_RH_exchange(Ta=25, VP=1000)
{'RH': 3162.5313716045744}

>>> biometeo.UTCI(Ta=20.0, VP=12.5, v=0.341, Tmrt=20.0)
20.00801686910818

Input and Outputs

Fundamental inputs Optional inputs Defaults Outputs
Tmrt_calc Ta, RH, v1.1m, longitude, latitude, sea_level_height day_of_year, hour_of_day, timezone_offset, N, G, DGratio, Tob, ltf, alb, albhum, RedGChk, foglimit, bowen" now time, N=0, OmegaF=1.0, alb=0.3, albhum=0.3, RedGChk=False, foglimit=90, bowen=1.0 {Tmrt, VP, Imax, Gmax, Dmax, Itat, Gtat, A, Eu, Es, Tob}
VP_RH_exchange Ta, VP or RH {VP} or {RH}
v1m_cal WS, height v1.1m
PMV Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex icl=0.6, work=80, ht=1.75, mbody=75, age=35, sex=1 (male) {PMV, Teq, hclo}
SET* Ta, RH, v1.1m, Tmrt icl, work, ht, mbody icl=0.9, work=80, ht=1.75, mbody=75 SET*
PET Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex, pos icl=0.9, work=80, ht=1.75, mbody=75, age=35, sex=1(male), pos=1 (stand) {PET, Tcore, Tsk, Tcl, wetsk, metabolic_rate, respiratory_flux, convective_flux, radiative_flux, diffuse_flux, sweating_flux}
mPET Ta, VP, v1.1m, Tmrt icl, work, ht, mbody, age, sex, pos, auto_clo icl=0.9, work=80, ht=1.75, mbody=75, age=35, sex=1(male), pos=1 (stand), auto_clo=True {mPET, Tcore, Tsk_mm, 'Tcl, ‘vpts, wetsk, icl, sk_wetted_mm, metabolic_rate, wet_sum, convective_flux, radiative_flux, respiratory_flux, energy_balance}
UTCI Ta, VP, v1.1m, Tmrt UTCI

Citation

The citation about Python package biometeo is still under reviewing. For use of the function or thermal indices in biometeo. The following citations are suggested. For applying Universal Thermal Climate Index (UTCI), the following scientific reports are suggested to be cited.

For calculation of Predicted Mean Vote (PMV), the following paper should be informed.

For using Outdoor Standard Effective Temperature (SET*), the following manuscript is suggested to be cited.

For application of Physiologically Equivalent Temperature (PET), the following paper is highly recommended to be cited.

  • Höppe, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43, 71–75 (1999). http://link.springer.com/10.1007/s004840050118 .

For application of modified Physiologically Equivalent Temperature (mPET), the following papers are highly suggested to be cited.

For simulation of mean radiant temperature (Tmrt), the following two papers explain the mechanisms of Tmrt simulation in RayMan and also in Python package biometeo.

  • Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the rayman model. International Journal of Biometeorology 51, 323–334 (2007). https://doi.org/10.1007/s00484-006-0061-8 .
  • Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the rayman model. International Journal of Biometeorology 54, 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0 .

For using exponent equation as reducing mechanism of wind speed from some height to 1.1 m, the following is the original literature.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

biometeo-0.4.0-cp313-cp313-win_amd64.whl (762.0 kB view details)

Uploaded CPython 3.13Windows x86-64

biometeo-0.4.0-cp313-cp313-macosx_15_0_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.13macOS 15.0+ x86-64

biometeo-0.4.0-cp313-cp313-macosx_14_0_arm64.whl (855.0 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

biometeo-0.4.0-cp312-cp312-win_amd64.whl (764.1 kB view details)

Uploaded CPython 3.12Windows x86-64

biometeo-0.4.0-cp312-cp312-macosx_15_0_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 15.0+ x86-64

biometeo-0.4.0-cp312-cp312-macosx_14_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

biometeo-0.4.0-cp311-cp311-win_amd64.whl (821.8 kB view details)

Uploaded CPython 3.11Windows x86-64

biometeo-0.4.0-cp311-cp311-macosx_15_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11macOS 15.0+ x86-64

biometeo-0.4.0-cp311-cp311-macosx_14_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

biometeo-0.4.0-cp310-cp310-win_amd64.whl (813.5 kB view details)

Uploaded CPython 3.10Windows x86-64

biometeo-0.4.0-cp310-cp310-macosx_15_0_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 15.0+ x86-64

biometeo-0.4.0-cp310-cp310-macosx_14_0_arm64.whl (934.3 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

biometeo-0.4.0-cp39-cp39-win_amd64.whl (814.6 kB view details)

Uploaded CPython 3.9Windows x86-64

biometeo-0.4.0-cp39-cp39-macosx_15_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9macOS 15.0+ x86-64

biometeo-0.4.0-cp39-cp39-macosx_14_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

biometeo-0.4.0-cp38-cp38-win_amd64.whl (900.3 kB view details)

Uploaded CPython 3.8Windows x86-64

biometeo-0.4.0-cp38-cp38-macosx_15_0_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 15.0+ x86-64

biometeo-0.4.0-cp38-cp38-macosx_14_0_arm64.whl (938.3 kB view details)

Uploaded CPython 3.8macOS 14.0+ ARM64

File details

Details for the file biometeo-0.4.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 762.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.11

File hashes

Hashes for biometeo-0.4.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 0e4574e4ab0c774a9aad49fdff94b3fa4117158f717b1fbc3971b40bf66420b7
MD5 2fbfefe5ab89fb567e30a22c4ffe9b3a
BLAKE2b-256 83aae45a35c7740586da48f9074282ace694b896b05647b1ebeef2437b8ee1b5

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp313-cp313-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp313-cp313-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 eafcc9eecf7737dd5ae96190afea3a52a23dfd6e9dd63d7ddc5e4ceab06af402
MD5 2ff110cc450354d9d839a8be27218165
BLAKE2b-256 12eb0be36a35fb77169455acdb25751162477c08c39e80e6e269d79c36cd8830

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 048ce8fbc3d2bbc46949ecf1705f04b5c60ac1f64bccb2f9ca5c70ae822dc641
MD5 c429978b6a2b30f1ca5f506d556de957
BLAKE2b-256 0ffd0a3dfb461f4f1a72d543f2d03720d0248b48fdf39c0b4e6e51c46ef25a66

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 764.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for biometeo-0.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 76f505a1f78e570f9fcf391f302bfe3452d80fd8855e6a58b3004597e95f8f3e
MD5 686e2baff021eaeecba1035efb01cab8
BLAKE2b-256 b8e123b6d13907312c46ec9c752289d3c6bafb70170fd022f7da0c2a6f1fefe8

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp312-cp312-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp312-cp312-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 38b5e54c81a5bbb77148601f281ed186b472381da13e107444082122dc76cdf7
MD5 8371ab6cc01cd44cd0b386c04e03ed5a
BLAKE2b-256 c944399f85b8e4eab13aa05612bc9f8fc59865ad9ebcb0946599dec9e39746fb

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 42a1924baf02b1b50c620574c78fc2c5e34677fe1dde6bcef51e29d807ec9692
MD5 40be7ac50a3202ecc0a970697b6fc6ce
BLAKE2b-256 d585c2f7820495305ea294476da919f0da49fa859d7e924e5848b0b3bfcee303

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 821.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for biometeo-0.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8178e69967adeb7463ed3b145e00adec6cf5730f19f7845a2f7dbc277e6e493f
MD5 c921bf1df649cc033f73d02f925d99e0
BLAKE2b-256 5468eccb4b9e4bae0ad8c8b837fbdee04ad566981d082f554b590856c0c9a792

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp311-cp311-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp311-cp311-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 12b5908f283d33a94da91adda41778bf0c989e4566122402dd297914eda9b08f
MD5 f6f58be8653c374026b23fea6b3fce97
BLAKE2b-256 b20a55ecb21770ff1417925dda4cbc11c6b98374e0417c6988838a07e0557268

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7cd07a2753fad74051bd5e686e5f62e392373547d0a1b49d782fb9d4f9663e0a
MD5 e7ac2cadf87c4ea8c7cf496a03161a2d
BLAKE2b-256 9e057fcd62155bc2278c95fa0b63492901cda8ae11cf6635c7a440bec7df535e

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 813.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.11

File hashes

Hashes for biometeo-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f126bda3fe935068cea0512aa17bd5ea2925ff9b4b327b73eb165ab0dde4e511
MD5 d1db2d370ebe92a55ca343fa2475395b
BLAKE2b-256 92a9e53b0d1f3dc9aedc9576fdaf6fb39989e05ec6ae3b9dfd3f78391359c961

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp310-cp310-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp310-cp310-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 a159472731c75456f9aa75be2a2030a711f9967fa5aa29f63415ee20601b5355
MD5 d1bfee225af2d1997a660e5cc013af8d
BLAKE2b-256 b937edcf4df1e1f79529915c13c14bb3ba1338511d4f3ccc8def0cd79d0fcd72

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 01f8ac97f1d7acde6274007ed4190ed43aa886b632e36292392e2ddb687f22e7
MD5 3e481db88dea90c33bc59646f3a7c49d
BLAKE2b-256 b8cd23197a52c66405c8ec02872876913abd2fab7767d15abdb7a0ccdf23b388

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 814.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for biometeo-0.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9a7bd6da9ff5aed9bfb8b547c3d39108b781991346d7717bf26ff31e25b92a82
MD5 91a46f32d557a6dd0bc10e54547f1c2a
BLAKE2b-256 1062deda637937c197c0243a8746121504ddb56d318ff7d89519599ae685fd03

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp39-cp39-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp39-cp39-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 f5007667d079c16c286a676a0a727e80af4ac60be90f4ef064a3fa7b9d906df4
MD5 40674a670d97aceae8e79e69db6fb985
BLAKE2b-256 16be0349655fd813bd415d39b8d395846d798ab493fe929b04d2efce580428bd

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a72f55efe893e10a56bf8aa87026ea909dd5669e3482ed2385fbe174e43ade07
MD5 9164e6b6f63cf32bf0ad8764de935df4
BLAKE2b-256 920ba7d72b642d344aef92a22aa839b398df22bd5b063243aee8fc0d958da060

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: biometeo-0.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 900.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.8.20

File hashes

Hashes for biometeo-0.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 143c9bf62b3c7ff6a9f0aa9767c2e6acb00e85c55107427e5abd1c57359406e3
MD5 f7607941102775d39b88d0759dbc3802
BLAKE2b-256 477da44ff03b8b28b88a919912a956ce2394a51eb896721c8e2d93f63ca70dd2

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp38-cp38-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp38-cp38-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 e89380ad43a17fee5a4bbdd57f021b5358fb3b63ed1c972a767548340fa1b985
MD5 4531465b26d1fd45500c2df2c0b4f588
BLAKE2b-256 44587b0d2c426fdd76577f7f8ecd9d6c9194d9f9a47f1226f02226a33c91f5c6

See more details on using hashes here.

File details

Details for the file biometeo-0.4.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for biometeo-0.4.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3ed12eea35795c7077e0932417c00c4abe7fce241570d2f063f19f31cb4a57ed
MD5 7c27b9c5eab843919854abdc9d57b011
BLAKE2b-256 ab511d8cca15e65841b4566162710bcfcbe0b1c975de668c55281dd6af633a23

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page