Skip to main content

Interconvert various file formats supported by biopython. Supports querying records with JMESPath.

Project description

https://zenodo.org/badge/195302632.svg

BioPython-Convert

Interconvert various file formats supported by BioPython.

Supports querying records with JMESPath.

Installation

pip install biopython-convert

or:

conda install biopython-convert

or:

git clone https://github.com/brinkmanlab/BioPython-Convert.git
cd BioPython-Convert
./setup.py install

Use

biopython.convert [-s] [-v] [-i] [-q JMESPath] input_file input_type output_file output_type
    -s Split records into seperate files
    -q JMESPath to select records. Must return list of SeqIO records or mappings. Root is list of input SeqIO records.
    -i Print out details of records during conversion
    -v Print version and exit
Supported formats

abi, abi-trim, ace, cif-atom, cif-seqres, clustal, embl, fasta, fasta-2line, fastq-sanger, fastq, fastq-solexa, fastq-illumina, genbank, gb, ig, imgt, nexus, pdb-seqres, pdb-atom, phd, phylip, pir, seqxml, sff, sff-trim, stockholm, swiss, tab, qual, uniprot-xml, gff3, txt, json, yaml

JMESPath

The root node for a query is a list of SeqRecord objects. The query can return a list with a subset of these or a mapping, keying to the constructor parameters of a SeqRecord object.

If the formats are txt, json, or yaml, then the JMESPath resulting object will simply be dumped in those formats.

A web based tool is available to experiment with constructing queries in real time on your data. Simply convert your dataset to JSON and load it into the JMESPath playground to begin composing your query. It supports loading JSON files directly rather than trying to copy/paste the data.

split() and let() functions are available in addition to the JMESPath standard functions

extract(Seq, SeqFeature) is also made available to allow access to the SeqFeature.extract() function within the query

Examples:

Append a new record:

[@, [{'seq': 'AAAA', 'name': 'my_new_record'}]] | []

Filter out any plasmids:

[?!(features[?type=='source'].qualifiers.plasmid)]

Keep only the first record:

[0]

Output taxonomy of each record (txt output):

[*].annotations.taxonomy

Output json object containing id and molecule type:

[*].{id: id, type: annotations.molecule_type}

Convert dataset to PTT format using text output:

[0].[join(' - 1..', [description, to_string(length(seq))]), join(' ', [to_string(length(features[?type=='CDS' && qualifiers.translation])), 'proteins']), join(`"\t"`, ['Location', 'Strand', 'Length', 'PID', 'Gene', 'Synonym', 'Code', 'COG', 'Product']), (features[?type=='CDS' && qualifiers.translation].[join('..', [to_string(sum([location.start, `1`])), to_string(location.end)]), [location.strand][?@==`1`] && '+' || '-', length(qualifiers.translation[0]), (qualifiers.db_xref[?starts_with(@, 'GI')].split(':', @)[1])[0] || '-', qualifiers.gene[0] || '-', qualifiers.locus_tag[0] || '-', '-', '-', qualifiers.product[0] ] | [*].join(`"\t"`, [*].to_string(@)) )] | []

Convert dataset to faa format using fasta output:

[0].let({org: (annotations.organism || annotations.source)}, &(features[?type=='CDS' && qualifiers.translation].{id:
join('|', [
        (qualifiers.db_xref[?starts_with(@, 'GI')].['gi', split(':', @)[1]]),
        (qualifiers.protein_id[*].['ref', @]),
        (qualifiers.locus_tag[*].['locus', @]),
        join('', [':', [location][?strand==`-1`] && 'c' || '', to_string(sum([location.start, `1`])), '..', to_string(location.end)])
][][]),
seq: qualifiers.translation[0],
description: (org && join('', [qualifiers.product[0], ' [', org, ']']) || qualifiers.product[0])}))

See CONTRIBUTING.rst for information on contributing to this repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biopython.convert-1.3.3.tar.gz (30.1 MB view details)

Uploaded Source

File details

Details for the file biopython.convert-1.3.3.tar.gz.

File metadata

  • Download URL: biopython.convert-1.3.3.tar.gz
  • Upload date:
  • Size: 30.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for biopython.convert-1.3.3.tar.gz
Algorithm Hash digest
SHA256 5cb2df5321eb1455d469bb33bc27f2feb104b14778c733d275d95ef00b5ac1d8
MD5 4e0f5e15a3da0e371765b4af5df56f96
BLAKE2b-256 8ea9b79d1900c4e6522c96d44ce380671789dbb01368e1de80a0ab1b3a477a09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page