Skip to main content

A feature detection LC-MS1 spectra.

Project description

biosaur2 - A feature detection LC-MS1 spectra. This project is a rewriten version of Biosaur software (https://github.com/abdrakhimov1/Biosaur).

The centroided mzML file is required for of the script.

Algorithm can be run with following command:

biosaur2 path_to_MZML

The script output contains tsv table with peptide features.

All available arguments can be shown with command "biosaur2 -h".

The default parameter minlh (the minimal number of consecutive scans for peptide feature) is 1 and this value is optimimal for ultra-short LC gradients (a few minutes). For the longer LC gradients, this value can be increased for reducing of feature detection time and removing noise isotopic clusters.

For TOF data please add "-tof" argument.

For PASEF data please convert mzML file using msconvert and '--combineIonMobilitySpectra --filter "msLevel 1" ' options. Do not use option --filter "scanSumming"! The latter is often required for MS/MS data analysis but breaks MS1 feature detection.

For negative mode data please add "-nm" argument.

Citing biosaur2

Abdrakhimov, et al. Biosaur: An open-source Python software for liquid chromatography-mass spectrometry peptide feature detection with ion mobility support. https://doi.org/10.1002/rcm.9045

Installation

Using the pip:

pip install biosaur2

Available parameters

-minlh: Minimum number of MS1 scans for peaks extracted from the mzML file. Optimal usually is in 1-3 range for 5-15 min LC gradients and 5-10 for 60-180 min gradients. Default = 2

-mini : Minimal intensity threshold for peaks extracted from the mzML file. Default = 1

-minmz : Minimal m/z value for peaks extracted from the mzML file. Default = 350

-maxmz : Maximal m/z value for peaks extracted from the mzML file. Default = 1500

-htol : Mass accuracy in ppm to combine peaks into hills between scans. Default = 8 ppm

-itol : Mass accuracy in ppm for isotopic hills. Default = 8 ppm

-o : Path to output feature files. Default is the name of the input mzML file with added “.features.tsv” mask stored in the folder of the original mzML file

-hvf: Threshold to split hills into multiple if local minimum intensity multiplied by hvf is less than both surrounding local maximums. All peaks after splitting must have at least max(2, minlh) MS1 scans. Default = 1.3

-nm : Negative mode. 1-true, 0-false. Affect only neutral mass column calculated in the output features table. Default = 0

-cmin: Minimum allowed charge for isotopic clusters. Default = 1

-cmax: Maximal allowed charge for isotopic clusters. Default = 6

-nprocs: Number of processes used by biosau2. Automatically set to 1 for Windows system due to multiprocessing issues. Default = 4

-write_hills: Add hills output if added as the parameter

-paseminlh: For TIMS-TOF data. Minimum number of ion mobility values for m/z peaks to be kept in the analysis. Default = 1

-paseftol: For TIMS-TOF data. Ion mobility tolerance used to combine close peaks into a single one. Default = 0.05

-pasefmini: For TIMS-TOF data. Minimal intensity threshold for peaks after combining peaks with close m/z (itol option) and ion mobility (paseftol option) values. Default = 100

-tof: Experimental. If added as the parameter, biosaur2 estimates noise intensity distribution across m/z range and automatically calculates intensity cutoffs for different m/z value ranges. This is an alternative way to reduce noise to the "-mini" option which is a fixed intensity threshold for all m/z values. Can be usefull for TOF data

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biosaur2-0.2.15.tar.gz (178.1 kB view details)

Uploaded Source

Built Distributions

biosaur2-0.2.15-cp311-cp311-win_amd64.whl (126.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

biosaur2-0.2.15-cp311-cp311-musllinux_1_1_x86_64.whl (933.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

biosaur2-0.2.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (910.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biosaur2-0.2.15-cp310-cp310-win_amd64.whl (125.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

biosaur2-0.2.15-cp310-cp310-musllinux_1_1_x86_64.whl (850.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

biosaur2-0.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biosaur2-0.2.15-cp39-cp39-win_amd64.whl (125.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

biosaur2-0.2.15-cp39-cp39-musllinux_1_1_x86_64.whl (853.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

biosaur2-0.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file biosaur2-0.2.15.tar.gz.

File metadata

  • Download URL: biosaur2-0.2.15.tar.gz
  • Upload date:
  • Size: 178.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for biosaur2-0.2.15.tar.gz
Algorithm Hash digest
SHA256 0ffefb46129850846912132e4acdd8cf749167f67f8f5ee97b361d13d6fadf8c
MD5 912dbc1a4e4205e61ac1e3bde250303a
BLAKE2b-256 6f00ef9a2bc7d4b002896401aaa22bd4a57a148b8df28a263c07d04764da4aa3

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cc9625c499d62cca66a8b099751a817dbc6656c55f8425e3933de72da8687156
MD5 07a7c1ed36333bf9688eabeeb05c2dbf
BLAKE2b-256 4c03796baa6b9418ae1037f0871a08a07b4b75d622e529531ec6bddb12193b24

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0b53eaac79c83e70a8fa6cf685e9a0bf1988bdf426626194d2e6911916d7b1c7
MD5 c9be61f73e5f8e6b4a70b2d009f19944
BLAKE2b-256 6c3b18f9a8b97f7ce215f0d7db12d08bd4b4dad2c4b5b2ac942304808bad869e

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c0fc75f69e86ee67cd94ca5852417330cd92f354293ff70d44055e9c7b3df0e
MD5 2c8bc533c0b825dabb0a673efc89428b
BLAKE2b-256 0d0b665350af069a5ce5a212be85de82ef30e3fc983063ffa8d1dfbbd0a47e3a

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 92f3205e2e3c855460986f7fd1df788f0d4b22b47b17b505ae354521e3617474
MD5 b04143f24a130cb515986e4a2fe1c72c
BLAKE2b-256 569122f5e8b408177498d8f168a79bfb60047293f9379008a641db9b3d3da7b3

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f63b685074029145d08d16bb5dde6a28108660f794da5d348dd958c37786ba7a
MD5 dad334fcfd91c1a613bb901f74798a63
BLAKE2b-256 7db81a1681055de54ac7039157cdfa2488fe25cc0bf158183d16e9ffb6b7c6ae

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88741bc1d8539be9a49865e49618d2b2414d1e56107cbd3eaddefb9ff3810eb0
MD5 c9ff1f6f78a1ff6d4f33c6904920bc5d
BLAKE2b-256 4476a6afa0ba9244ef360819cbd91282efb93b86863588e0a314f2740d974268

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: biosaur2-0.2.15-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 125.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for biosaur2-0.2.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3ed1ef4580b1d58dfadd9e1445f24dae6cec862fc2e00e654dbd40ba5e5515cb
MD5 51afc5260dd9a0e8cd35f5e60832f80a
BLAKE2b-256 b157f65b0f1589f27fa6fbb6e44253c589b3693abd59ed511c4817dfa1d9abb2

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3b8f65b7f6c5fd36fd6f3ed4645411499f528816b817c5fb9dcaea9561ecf3e
MD5 86d87c81625b1c29295bdee32263b060
BLAKE2b-256 8754eb8ab0ff0e8a53631804139fa76baf73d66cb2522731e9b1fa87ebc688c0

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7fcc27eb82cc0c5f3df20225853246a0da4a2f32047c649ed9bfa3402b3d3547
MD5 113a3b52bcc85a2d0952608576a498d8
BLAKE2b-256 72ab886a27cbfa9609d2c3453975d6d60798a1de6f1bbd9fb2c8231b09205bbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page