Skip to main content

A feature detection LC-MS1 spectra.

Project description

biosaur2 - A feature detection LC-MS1 spectra. This project is a rewriten version of Biosaur software (https://github.com/abdrakhimov1/Biosaur).

The centroided mzML file is required for of the script.

Algorithm can be run with following command:

biosaur2 path_to_MZML

The script output contains tsv table with peptide features.

All available arguments can be shown with command "biosaur2 -h".

The default parameter minlh (the minimal number of consecutive scans for peptide feature) is 1 and this value is optimimal for ultra-short LC gradients (a few minutes). For the longer LC gradients, this value can be increased for reducing of feature detection time and removing noise isotopic clusters.

For TOF data please add "-tof" argument.

For PASEF data please convert mzML file using msconvert and '--combineIonMobilitySpectra --filter "msLevel 1" ' options. Do not use option --filter "scanSumming"! The latter is often required for MS/MS data analysis but breaks MS1 feature detection.

For negative mode data please add "-nm" argument.

Citing biosaur2

Abdrakhimov, et al. Biosaur: An open-source Python software for liquid chromatography-mass spectrometry peptide feature detection with ion mobility support. https://doi.org/10.1002/rcm.9045

Installation

Using the pip:

pip install biosaur2

Available parameters

-minlh: Minimum number of MS1 scans for peaks extracted from the mzML file. Optimal usually is in 1-3 range for 5-15 min LC gradients and 5-10 for 60-180 min gradients. Default = 2

-mini : Minimal intensity threshold for peaks extracted from the mzML file. Default = 1

-minmz : Minimal m/z value for peaks extracted from the mzML file. Default = 350

-maxmz : Maximal m/z value for peaks extracted from the mzML file. Default = 1500

-htol : Mass accuracy in ppm to combine peaks into hills between scans. Default = 8 ppm

-itol : Mass accuracy in ppm for isotopic hills. Default = 8 ppm

-o : Path to output feature files. Default is the name of the input mzML file with added “.features.tsv” mask stored in the folder of the original mzML file

-hvf: Threshold to split hills into multiple if local minimum intensity multiplied by hvf is less than both surrounding local maximums. All peaks after splitting must have at least max(2, minlh) MS1 scans. Default = 1.3

-nm : Negative mode. 1-true, 0-false. Affect only neutral mass column calculated in the output features table. Default = 0

-cmin: Minimum allowed charge for isotopic clusters. Default = 1

-cmax: Maximal allowed charge for isotopic clusters. Default = 6

-nprocs: Number of processes used by biosau2. Automatically set to 1 for Windows system due to multiprocessing issues. Default = 4

-write_hills: Add hills output if added as the parameter

-paseminlh: For TIMS-TOF data. Minimum number of ion mobility values for m/z peaks to be kept in the analysis. Default = 1

-paseftol: For TIMS-TOF data. Ion mobility tolerance used to combine close peaks into a single one. Default = 0.05

-pasefmini: For TIMS-TOF data. Minimal intensity threshold for peaks after combining peaks with close m/z (itol option) and ion mobility (paseftol option) values. Default = 100

-tof: Experimental. If added as the parameter, biosaur2 estimates noise intensity distribution across m/z range and automatically calculates intensity cutoffs for different m/z value ranges. This is an alternative way to reduce noise to the "-mini" option which is a fixed intensity threshold for all m/z values. Can be usefull for TOF data

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biosaur2-0.2.16.tar.gz (178.0 kB view details)

Uploaded Source

Built Distributions

biosaur2-0.2.16-cp311-cp311-win_amd64.whl (126.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

biosaur2-0.2.16-cp311-cp311-musllinux_1_1_x86_64.whl (933.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

biosaur2-0.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (910.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

biosaur2-0.2.16-cp310-cp310-win_amd64.whl (125.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

biosaur2-0.2.16-cp310-cp310-musllinux_1_1_x86_64.whl (850.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

biosaur2-0.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

biosaur2-0.2.16-cp39-cp39-win_amd64.whl (125.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

biosaur2-0.2.16-cp39-cp39-musllinux_1_1_x86_64.whl (853.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

biosaur2-0.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file biosaur2-0.2.16.tar.gz.

File metadata

  • Download URL: biosaur2-0.2.16.tar.gz
  • Upload date:
  • Size: 178.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for biosaur2-0.2.16.tar.gz
Algorithm Hash digest
SHA256 35d5daaba4fdc6817b4877a60d526d641a259ea52c32c60b449c70aff6b15284
MD5 467f043310597d386ba08922e9e7ba48
BLAKE2b-256 bacabef2a745245ca1c75a94f14befa75a29e63b050aa4d36f927ba9f6ad3140

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a0f5731a01d7d514749fa1e0634c2d71f1105b9c1457841df0f3460ce86bf6c2
MD5 b77930a93dfc336f7148bd6db1a273e6
BLAKE2b-256 c512ab227f24a69bef657e31c1ffb653d30ed8015057fb83a4e429bd7fb5aaf6

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60c9c8ee46904d4a41d04202e3cd8c6fdb5c9cb02581895e53aea4c076d53237
MD5 993fd714b39c164b6d863586ed446019
BLAKE2b-256 7d0c6d97033f7684f0fb6bc94c15c73ba022411351139ca75f66b22f697db194

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07dd31104383427dcad9701bad4ba43e192c2e83023cf58b11d6599d878fc7fe
MD5 6324e53ab94de748d3008290fd55eb89
BLAKE2b-256 c3ec408c9f1e96d913f34a3878d55df80682f5a6722883562110231262a50e2d

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 93d296df1f1d0e5f9bf8910ad033bc21fbb21289d0375136e9d4912966977dae
MD5 8d3f756803391b8dbe221bea53cc4943
BLAKE2b-256 d96534b7627f26a9c83662dffff029e62cc4fdb5d69fd91ff7d3a78311fea2fb

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07d1ac22dd41c3ad5c35a15a800af42d66a32c9bb38d500fd43f91708304696f
MD5 644f36cda9bdc3a7e71eb47721bc2e96
BLAKE2b-256 25f84e51121758038a8f2a07d5be76bdbf5b02fad0d0573e88b1abe2a79c01bf

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 605dd54f3172d8f5fb93ff3753a3a9349c2bd7d18aaf9271b2618850f87b77ab
MD5 0baa9bf8e0d482313f56c791fa12bc8b
BLAKE2b-256 4966adb79c1adcd7373cf4f4404eb7574c3e5d0ce29206f4cc17709741aa0a07

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: biosaur2-0.2.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 125.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for biosaur2-0.2.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0c8c8e22d303a6883c1aae2eb3d731803ae5375ce30961f2be598032269bc1bf
MD5 1d92221a444b253a96ddb706bd6e5428
BLAKE2b-256 f3fda51bdd787443e261748e77529876eef5f0b5a6be13713d274cecf1ce2a3f

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a7454277edf52fb4c9ac9a84b6fab280c818612953ee72acd703ebc6e631ad03
MD5 b2a7f926f517fdcca58eface15359e30
BLAKE2b-256 38ec48b31cb9e9134f848a591980f7458d4586026c208c0a30079a8ebc014e88

See more details on using hashes here.

File details

Details for the file biosaur2-0.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for biosaur2-0.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abbd2268fcadf081e3c00de6e8fa1e1010c189ee03168d15522806b0aed84c67
MD5 86e221ad83053783bc16ab702463f9ac
BLAKE2b-256 770ddefeb11f5217cbde1f6f6fd943f70a66352f36507a91813179f35b28083a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page