Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Test

A python api for BirdNET-Lite and BirdNET-Analyzer

Installation

birdnetlib requires Python 3.7+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Documentation

birdnetlib provides a common interface for BirdNET-Lite and BirdNET-Analyzer.

Using BirdNET-Lite

To use the BirdNET-Lite model, use the LiteAnalyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer_lite import LiteAnalyzer
from datetime import datetime

# Load and initialize the BirdNET-Lite models.
analyzer = LiteAnalyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections) # Returns list of detections.

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0}]

Using BirdNET-Analyzer

To use the newer BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Utility classes

DirectoryAnalyzer

DirectoryAnalyzer can process a directory and analyze contained files.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

directory = DirectoryAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)
directory.on_analyze_complete = on_analyze_complete
directory.process()

See the full example for analyzer options and error handling callbacks.

DirectoryWatcher

DirectoryWatcher can watch a directory and analyze new files as they are created.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

watcher = DirectoryWatcher("/Birds/mp3_dir")
watcher.on_analyze_complete = on_analyze_complete
watcher.watch()

See the full example for analyzer options and error handling callbacks.

SpeciesList

SpeciesList uses BirdNET-Analyzer to predict species lists from location and date.

species = SpeciesList()
species_list = species.return_list(
    lon=-120.7463, lat=35.4244, date=datetime(year=2022, month=5, day=10)
)
print(species_list)
# [{'scientific_name': 'Haemorhous mexicanus', 'common_name': 'House Finch', 'threshold': 0.8916686}, ...]

Additional examples

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.0.17.tar.gz (75.1 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.0.17-py3-none-any.whl (75.1 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.0.17.tar.gz.

File metadata

  • Download URL: birdnetlib-0.0.17.tar.gz
  • Upload date:
  • Size: 75.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for birdnetlib-0.0.17.tar.gz
Algorithm Hash digest
SHA256 5cb48be3c7ce0dd924ad37c3df75c68fccc44c0b70494a87a6b174ed5c2d5b1c
MD5 61c42a5c583fb6ff458b26a553308ea2
BLAKE2b-256 f06ae5dfb58053f58a69584fad65f6ecae8bfc75d45b06c863a78032f48c4a8a

See more details on using hashes here.

File details

Details for the file birdnetlib-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 75.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for birdnetlib-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 0fe6ab58af4a3e7f469eaa3689e3337b8d35f7fd1514a082073a7ac3ad4dee99
MD5 c8c33987f478d5ef1bec7015b6fe3b64
BLAKE2b-256 b8bc4895c8f47d26f96b0850b3336e0eed1edaef87070ce5398f3023c6a8bd39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page