Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Test

A python api for BirdNET-Lite and BirdNET-Analyzer

Installation

birdnetlib requires Python 3.7+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Documentation

birdnetlib provides a common interface for BirdNET-Lite and BirdNET-Analyzer.

Using BirdNET-Lite

To use the BirdNET-Lite model, use the LiteAnalyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer_lite import LiteAnalyzer
from datetime import datetime

# Load and initialize the BirdNET-Lite models.
analyzer = LiteAnalyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections) # Returns list of detections.

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0}]

Using BirdNET-Analyzer

To use the newer BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Utility classes

DirectoryAnalyzer

DirectoryAnalyzer can process a directory and analyze contained files.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

directory = DirectoryAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)
directory.on_analyze_complete = on_analyze_complete
directory.process()

See the full example for analyzer options and error handling callbacks.

DirectoryWatcher

DirectoryWatcher can watch a directory and analyze new files as they are created.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

watcher = DirectoryWatcher("/Birds/mp3_dir")
watcher.on_analyze_complete = on_analyze_complete
watcher.watch()

See the full example for analyzer options and error handling callbacks.

SpeciesList

SpeciesList uses BirdNET-Analyzer to predict species lists from location and date.

species = SpeciesList()
species_list = species.return_list(
    lon=-120.7463, lat=35.4244, date=datetime(year=2022, month=5, day=10)
)
print(species_list)
# [{'scientific_name': 'Haemorhous mexicanus', 'common_name': 'House Finch', 'threshold': 0.8916686}, ...]

Additional examples

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.0.20.tar.gz (75.1 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.0.20-py3-none-any.whl (75.1 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.0.20.tar.gz.

File metadata

  • Download URL: birdnetlib-0.0.20.tar.gz
  • Upload date:
  • Size: 75.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for birdnetlib-0.0.20.tar.gz
Algorithm Hash digest
SHA256 ef8ffe73ccfb4ead3c2ebde9a4c8dfef549ece5814bd75fa15c7f4df8f52884a
MD5 78759e5aff738c03067ae87cf0456fd1
BLAKE2b-256 851f83e0c068aca2c997ced9c11299f7459731a5c7412f768c5fb356e59ba72a

See more details on using hashes here.

File details

Details for the file birdnetlib-0.0.20-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.0.20-py3-none-any.whl
  • Upload date:
  • Size: 75.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for birdnetlib-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 2073b28556cff7a066dfaf51a8788a489a4ee648f6357192cdb92aafd8a35bd2
MD5 c36e5d52bf509227ed22a5414b6fb134
BLAKE2b-256 76159e3488cd7a3600122428c6d07b62c192a103768421d8df09cf91a8edbe2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page