Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Python 3.x Test

A python api for BirdNET-Analyzer and BirdNET-Lite

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Documentation

Documentation is at https://joeweiss.github.io/birdnetlib.

See Getting Started for a quick introduction.

Installation

birdnetlib requires Python 3.9+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Basic usage

To use the latest BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0,
  'label': 'Haemorhous mexicanus_House Finch'},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0,
  'label': 'Haemorhous mexicanus_House Finch'}]

The Recording class takes a file path as an argument. You can also use RecordingFileObject to analyze an in-memory object, or RecordingBuffer for handling an array buffer.

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.11.0.tar.gz (54.0 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.11.0-py3-none-any.whl (54.0 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.11.0.tar.gz.

File metadata

  • Download URL: birdnetlib-0.11.0.tar.gz
  • Upload date:
  • Size: 54.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for birdnetlib-0.11.0.tar.gz
Algorithm Hash digest
SHA256 35bbeb81c39820dea5b4838c19102e456809902dac0e92bc3777db2cdd060212
MD5 a1b5086d9174df3189ec0543d4b01b51
BLAKE2b-256 cdb9ac5362ba979113c6911fe4c6342fba3b79c1095fbdc2b1a286a415ef13e7

See more details on using hashes here.

File details

Details for the file birdnetlib-0.11.0-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.11.0-py3-none-any.whl
  • Upload date:
  • Size: 54.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for birdnetlib-0.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 827ff6f1e9bee7746f4e6fe05e24a5cef50f763301eeb87e99912a475c8224b8
MD5 72d722a62c37bb0becd1e89a4be218b1
BLAKE2b-256 5e52525ac95993a643ad30e9234d9fcf7001de9d95e51d3823c24a4ba752efd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page