Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Python 3.x Test

A python api for BirdNET-Analyzer and BirdNET-Lite

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Documentation

Documentation is at https://joeweiss.github.io/birdnetlib.

See Getting Started for a quick introduction.

Installation

birdnetlib requires Python 3.9+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Basic usage

To use the latest BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0,
  'label': 'Haemorhous mexicanus_House Finch'},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0,
  'label': 'Haemorhous mexicanus_House Finch'}]

The Recording class takes a file path as an argument. You can also use RecordingFileObject to analyze an in-memory object, or RecordingBuffer for handling an array buffer.

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.13.1.tar.gz (54.0 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.13.1-py3-none-any.whl (54.0 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.13.1.tar.gz.

File metadata

  • Download URL: birdnetlib-0.13.1.tar.gz
  • Upload date:
  • Size: 54.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for birdnetlib-0.13.1.tar.gz
Algorithm Hash digest
SHA256 df62ab01591cbb1e689cc467d26881aba9ef2e1bf58d4658c917143da60cb8ed
MD5 ff37eb84a4d2be324ed0a1fb42c83d0c
BLAKE2b-256 22b53f17156325a479a9eab058b5e3217528d6ddcfef6be62413945b6025e401

See more details on using hashes here.

File details

Details for the file birdnetlib-0.13.1-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.13.1-py3-none-any.whl
  • Upload date:
  • Size: 54.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for birdnetlib-0.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 20317811afc53c5188a39d49f326087c5674b0fdd1cbfba8952e9ed0229ccb76
MD5 121e5dd21a6f511db21c7aaa381a250f
BLAKE2b-256 7f50774767bc6d745e3481245d9cd04b55d880e3dbfb97e7a76d84086affba45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page