Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Test

A python api for BirdNET-Analyzer and BirdNET-Lite

Installation

birdnetlib requires Python 3.7+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Documentation

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Using BirdNET-Analyzer

To use the newer BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Using a custom classifier with BirdNET-Analyzer

To use the a model trained with BirdNET-Analyzer, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer

# Load and initialize BirdNET-Analyzer with your own model/labels.

custom_model_path = "custom_classifiers/trogoniformes.tflite"
custom_labels_path = "custom_classifiers/trogoniformes.txt"

analyzer = Analyzer(
    classifier_labels_path=custom_labels_path, classifier_model_path=custom_model_path
)

recording = Recording(
    analyzer,
    "sample.mp3",
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Using BirdNET-Lite

To use the BirdNET-Lite model, use the LiteAnalyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer_lite import LiteAnalyzer
from datetime import datetime

# Load and initialize the BirdNET-Lite models.
analyzer = LiteAnalyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections) # Returns list of detections.

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0}]

Utility classes

DirectoryAnalyzer

DirectoryAnalyzer can process a directory and analyze contained files.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

directory = DirectoryAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)
directory.on_analyze_complete = on_analyze_complete
directory.process()

See the full example for analyzer options and error handling callbacks.

DirectoryMultiProcessingAnalyzer

DirectoryMultiProcessingAnalyzer can process a directory and analyze contained files, using multiple processes asynchronously.

def on_analyze_directory_complete(recordings):
    for recording in recordings:
        pprint(recording.detections)

directory = "."
batch = DirectoryMultiProcessingAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)

batch.on_analyze_directory_complete = on_analyze_directory_complete
batch.process()

See the full example for analyzer options and error handling callbacks.

DirectoryWatcher

DirectoryWatcher can watch a directory and analyze new files as they are created.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

watcher = DirectoryWatcher("/Birds/mp3_dir")
watcher.on_analyze_complete = on_analyze_complete
watcher.watch()

See the full example for analyzer options and error handling callbacks.

SpeciesList

SpeciesList uses BirdNET-Analyzer to predict species lists from location and date.

species = SpeciesList()
species_list = species.return_list(
    lon=-120.7463, lat=35.4244, date=datetime(year=2022, month=5, day=10)
)
print(species_list)
# [{'scientific_name': 'Haemorhous mexicanus', 'common_name': 'House Finch', 'threshold': 0.8916686}, ...]

Additional examples

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.5.0.tar.gz (91.5 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.5.0-py3-none-any.whl (91.5 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.5.0.tar.gz.

File metadata

  • Download URL: birdnetlib-0.5.0.tar.gz
  • Upload date:
  • Size: 91.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for birdnetlib-0.5.0.tar.gz
Algorithm Hash digest
SHA256 559e702a27d91989d9e7f791439d9e555392915275d2f50afc1c2f4e3a1a5972
MD5 105e78dce021057e9b90699c16f6b9b6
BLAKE2b-256 3395b45c32c37cf35ab44f73e46c84ee7935be41ac691ec1391adb744d278fac

See more details on using hashes here.

File details

Details for the file birdnetlib-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 91.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for birdnetlib-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d0a1f38db6163915f738369ac68bc5d7eff6127f1dbf4fa1101d06bda29d68f0
MD5 2392df9646f8a8e93be567b683526fe7
BLAKE2b-256 52b490de6bf7a6ed4d05fa12f49de896275a733321a92cc38e3d6d7c8397f34c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page