Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Test

A python api for BirdNET-Analyzer and BirdNET-Lite

Installation

birdnetlib requires Python 3.7+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Documentation

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Using BirdNET-Analyzer

To use the newer BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0}]

Using a custom classifier with BirdNET-Analyzer

To use a model trained with BirdNET-Analyzer, pass your labels and model path to the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer

# Load and initialize BirdNET-Analyzer with your own model/labels.

custom_model_path = "custom_classifiers/trogoniformes.tflite"
custom_labels_path = "custom_classifiers/trogoniformes.txt"

analyzer = Analyzer(
    classifier_labels_path=custom_labels_path, classifier_model_path=custom_model_path
)

recording = Recording(
    analyzer,
    "sample.mp3",
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Using BirdNET-Lite

To use the legacy BirdNET-Lite model, use the LiteAnalyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer_lite import LiteAnalyzer
from datetime import datetime

# Load and initialize the BirdNET-Lite models.
analyzer = LiteAnalyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections) # Returns list of detections.

Utility classes

DirectoryAnalyzer

DirectoryAnalyzer can process a directory and analyze contained files.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

directory = DirectoryAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)
directory.on_analyze_complete = on_analyze_complete
directory.process()

See the full example for analyzer options and error handling callbacks.

DirectoryMultiProcessingAnalyzer

DirectoryMultiProcessingAnalyzer can process a directory and analyze contained files, using multiple processes asynchronously.

def on_analyze_directory_complete(recordings):
    for recording in recordings:
        pprint(recording.detections)

directory = "."
batch = DirectoryMultiProcessingAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)

batch.on_analyze_directory_complete = on_analyze_directory_complete
batch.process()

See the full example for analyzer options and error handling callbacks.

DirectoryWatcher

DirectoryWatcher can watch a directory and analyze new files as they are created.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

watcher = DirectoryWatcher("/Birds/mp3_dir")
watcher.on_analyze_complete = on_analyze_complete
watcher.watch()

See the full example for analyzer options and error handling callbacks.

SpeciesList

SpeciesList uses BirdNET-Analyzer to predict species lists from location and date.

species = SpeciesList()
species_list = species.return_list(
    lon=-120.7463, lat=35.4244, date=datetime(year=2022, month=5, day=10)
)
print(species_list)
# [{'scientific_name': 'Haemorhous mexicanus', 'common_name': 'House Finch', 'threshold': 0.8916686}, ...]

Additional examples

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.6.1.tar.gz (91.5 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.6.1-py3-none-any.whl (91.5 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.6.1.tar.gz.

File metadata

  • Download URL: birdnetlib-0.6.1.tar.gz
  • Upload date:
  • Size: 91.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for birdnetlib-0.6.1.tar.gz
Algorithm Hash digest
SHA256 cc97d2e9ee3d97cd708504f11b51ebd9d5608fd7f9f47f0a7f9284e029433754
MD5 6d681693a53601bb85189882720add5d
BLAKE2b-256 0991a4a5881eed4af30a324a66cb09606e31dfc861a5d651edf557363746d18a

See more details on using hashes here.

File details

Details for the file birdnetlib-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 91.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for birdnetlib-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5e5cea40d70523a588d814e34ec4558c94a67e71cdc02248ec6ea693d23e067a
MD5 b56c3718171a661ea02e131289eda82f
BLAKE2b-256 7c86648faa9f78419ba0c290c608489860d3cd21c8731e97855af1f738097d3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page