Skip to main content

A python api for BirdNET-Lite and BirdNET-Analyzer

Project description

birdnetlib

PyPI Test

A python api for BirdNET-Analyzer and BirdNET-Lite

Installation

birdnetlib requires Python 3.9+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Documentation

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Using BirdNET-Analyzer

To use the newer BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0}]

Using a custom classifier with BirdNET-Analyzer

To use a model trained with BirdNET-Analyzer, pass your labels and model path to the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer

# Load and initialize BirdNET-Analyzer with your own model/labels.

custom_model_path = "custom_classifiers/trogoniformes.tflite"
custom_labels_path = "custom_classifiers/trogoniformes.txt"

analyzer = Analyzer(
    classifier_labels_path=custom_labels_path, classifier_model_path=custom_model_path
)

recording = Recording(
    analyzer,
    "sample.mp3",
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

Using BirdNET-Lite

To use the legacy BirdNET-Lite model, use the LiteAnalyzer class.

Note: The BirdNET-Lite project has been deprecated. The BirdNET-Lite model is no longer included in the PyPi birdnetlib package. This model and label file will be downloaded and installed the first time the LiteAnalyzer is initialized in your Python environment.

from birdnetlib import Recording
from birdnetlib.analyzer_lite import LiteAnalyzer
from datetime import datetime

# Load and initialize the BirdNET-Lite models.
# If this is the first time using LiteAnalyzer, the model will be downloaded into your Python environment.
analyzer = LiteAnalyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections) # Returns list of detections.

Utility classes

DirectoryAnalyzer

DirectoryAnalyzer can process a directory and analyze contained files.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

directory = DirectoryAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)
directory.on_analyze_complete = on_analyze_complete
directory.process()

See the full example for analyzer options and error handling callbacks.

DirectoryMultiProcessingAnalyzer

DirectoryMultiProcessingAnalyzer can process a directory and analyze contained files, using multiple processes asynchronously.

def on_analyze_directory_complete(recordings):
    for recording in recordings:
        pprint(recording.detections)

directory = "."
batch = DirectoryMultiProcessingAnalyzer(
    "/Birds/mp3_dir",
    patterns=["*.mp3", "*.wav"]
)

batch.on_analyze_directory_complete = on_analyze_directory_complete
batch.process()

See the full example for analyzer options and error handling callbacks.

DirectoryWatcher

DirectoryWatcher can watch a directory and analyze new files as they are created.

def on_analyze_complete(recording):
    print(recording.path)
    pprint(recording.detections)

watcher = DirectoryWatcher("/Birds/mp3_dir")
watcher.on_analyze_complete = on_analyze_complete
watcher.watch()

See the full example for analyzer options and error handling callbacks.

SpeciesList

SpeciesList uses BirdNET-Analyzer to predict species lists from location and date.

species = SpeciesList()
species_list = species.return_list(
    lon=-120.7463, lat=35.4244, date=datetime(year=2022, month=5, day=10)
)
print(species_list)
# [{'scientific_name': 'Haemorhous mexicanus', 'common_name': 'House Finch', 'threshold': 0.8916686}, ...]

Additional examples

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

birdnetlib-0.9.0.tar.gz (54.0 MB view details)

Uploaded Source

Built Distribution

birdnetlib-0.9.0-py3-none-any.whl (54.0 MB view details)

Uploaded Python 3

File details

Details for the file birdnetlib-0.9.0.tar.gz.

File metadata

  • Download URL: birdnetlib-0.9.0.tar.gz
  • Upload date:
  • Size: 54.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for birdnetlib-0.9.0.tar.gz
Algorithm Hash digest
SHA256 2805616e14b5745778677082a6aca1c9e11965047a3563290b9c7c4f156338a9
MD5 57e902c4a51e000cc7c2196ffffc64bb
BLAKE2b-256 8499f8fd5821e300b95c4a5d558f6b456dd15b4e602fe4ae0adcfe45a14ac17f

See more details on using hashes here.

File details

Details for the file birdnetlib-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: birdnetlib-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 54.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for birdnetlib-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 39ea5b8ebdc728b584d990849bd40283b4c6b0a264f1a1fff71974ccd27389d9
MD5 6db4f1c71f9b529e9e88bef6302b3025
BLAKE2b-256 61f6a8a263432c78ac14e429a092dd5300fd8b8b30bd4e661d552bb3aaacb0a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page