Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework
Project description
This project is a spinoff from FLAML.
AutoGen
:fire: Heads-up: pyautogen v0.2 will switch to using openai v1.
What is AutoGen
AutoGen is a framework that enables the development of LLM applications using multiple agents that can converse with each other to solve tasks. AutoGen agents are customizable, conversable, and seamlessly allow human participation. They can operate in various modes that employ combinations of LLMs, human inputs, and tools.
- AutoGen enables building next-gen LLM applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation, and optimization of a complex LLM workflow. It maximizes the performance of LLM models and overcomes their weaknesses.
- It supports diverse conversation patterns for complex workflows. With customizable and conversable agents, developers can use AutoGen to build a wide range of conversation patterns concerning conversation autonomy, the number of agents, and agent conversation topology.
- It provides a collection of working systems with different complexities. These systems span a wide range of applications from various domains and complexities. This demonstrates how AutoGen can easily support diverse conversation patterns.
- AutoGen provides enhanced LLM inference. It offers easy performance tuning, plus utilities like API unification and caching, and advanced usage patterns, such as error handling, multi-config inference, context programming, etc.
AutoGen is powered by collaborative research studies from Microsoft, Penn State University, and the University of Washington.
Quickstart
The easiest way to start playing is
-
Click below to use the Github Codespace
-
Copy OAI_CONFIG_LIST_sample to /notebook folder, name to OAI_CONFIG_LIST, and set the correct config.
-
Start playing with the notebooks!
Installation
AutoGen requires Python version >= 3.8. It can be installed from pip:
pip install pyautogen
Minimal dependencies are installed without extra options. You can install extra options based on the feature you need.
Find more options in Installation.
For code execution, we strongly recommend installing the python docker package, and using docker.
For LLM inference configurations, check the FAQs.
Multi-Agent Conversation Framework
Autogen enables the next-gen LLM applications with a generic multi-agent conversation framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans. By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code.
Features of this use case include:
- Multi-agent conversations: AutoGen agents can communicate with each other to solve tasks. This allows for more complex and sophisticated applications than would be possible with a single LLM.
- Customization: AutoGen agents can be customized to meet the specific needs of an application. This includes the ability to choose the LLMs to use, the types of human input to allow, and the tools to employ.
- Human participation: AutoGen seamlessly allows human participation. This means that humans can provide input and feedback to the agents as needed.
For example,
from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
# Load LLM inference endpoints from an env variable or a file
# See https://microsoft.github.io/autogen/docs/FAQ#set-your-api-endpoints
# and OAI_CONFIG_LIST_sample
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
# You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4', 'api_key': '<your OpenAI API key here>'},]
assistant = AssistantAgent("assistant", llm_config={"config_list": config_list})
user_proxy = UserProxyAgent("user_proxy", code_execution_config={"work_dir": "coding"})
user_proxy.initiate_chat(assistant, message="Plot a chart of NVDA and TESLA stock price change YTD.")
# This initiates an automated chat between the two agents to solve the task
This example can be run with
python test/twoagent.py
After the repo is cloned. The figure below shows an example conversation flow with AutoGen.
Please find more code examples for this feature.
Enhanced LLM Inferences
Autogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers enhanced LLM inference with powerful functionalities like tuning, caching, error handling, and templating. For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
# perform tuning
config, analysis = autogen.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_func,
inference_budget=0.05,
optimization_budget=3,
num_samples=-1,
)
# perform inference for a test instance
response = autogen.Completion.create(context=test_instance, **config)
Please find more code examples for this feature.
Documentation
You can find detailed documentation about AutoGen here.
In addition, you can find:
-
Research, blogposts around AutoGen, and Transparency FAQs
Citation
@inproceedings{wu2023autogen,
title={AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework},
author={Qingyun Wu and Gagan Bansal and Jieyu Zhang and Yiran Wu and Shaokun Zhang and Erkang Zhu and Beibin Li and Li Jiang and Xiaoyun Zhang and Chi Wang},
year={2023},
eprint={2308.08155},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@inproceedings{wang2023EcoOptiGen,
title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},
author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},
year={2023},
booktitle={AutoML'23},
}
@inproceedings{wu2023empirical,
title={An Empirical Study on Challenging Math Problem Solving with GPT-4},
author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},
year={2023},
booktitle={ArXiv preprint arXiv:2306.01337},
}
Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information, see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
Contributers Wall
Legal Notices
Microsoft and any contributors grant you a license to the Microsoft documentation and other content in this repository under the Creative Commons Attribution 4.0 International Public License, see the LICENSE file, and grant you a license to any code in the repository under the MIT License, see the LICENSE-CODE file.
Microsoft, Windows, Microsoft Azure, and/or other Microsoft products and services referenced in the documentation may be either trademarks or registered trademarks of Microsoft in the United States and/or other countries. The licenses for this project do not grant you rights to use any Microsoft names, logos, or trademarks. Microsoft's general trademark guidelines can be found at http://go.microsoft.com/fwlink/?LinkID=254653.
Privacy information can be found at https://privacy.microsoft.com/en-us/
Microsoft and any contributors reserve all other rights, whether under their respective copyrights, patents, or trademarks, whether by implication, estoppel, or otherwise.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file bisheng_pyautogen-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: bisheng_pyautogen-0.3.2-py3-none-any.whl
- Upload date:
- Size: 97.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 760e846141941ac63f3297ba89dbe623ce5556e64139f79b06a13bff85209660 |
|
MD5 | 5711c0c8d86923d4025e8dfae25971bc |
|
BLAKE2b-256 | 76ed020d58b94bbbd2122bb583f6b33f7b7e1b5376d5bec39db0a598c8c39a60 |