Skip to main content

Biterm Topic Model

Project description

Biterm Topic Model

GitHub Workflow Status Documentation Status Codacy Badge Issues Downloads Downloads PyPI

Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actually, it is a cythonized version of BTM. This package is also capable of computing perplexity, semantic coherence, and entropy metrics.

Development

Please note that bitermplus is actively improved. Refer to documentation to stay up to date.

Requirements

  • cython
  • numpy
  • pandas
  • scipy
  • scikit-learn
  • tqdm

Setup

Linux and Windows

There should be no issues with installing bitermplus under these OSes. You can install the package directly from PyPi.

pip install bitermplus

Or from this repo:

pip install git+https://github.com/maximtrp/bitermplus.git

Mac OS

First, you need to install XCode CLT and Homebrew. Then, install libomp using brew:

xcode-select --install
brew install libomp
pip3 install bitermplus

If you have the following issue with libomp (fatal error: 'omp.h' file not found), run brew info libomp in the console:

brew info libomp

You should see the following output:

libomp: stable 15.0.5 (bottled) [keg-only]
LLVM's OpenMP runtime library
https://openmp.llvm.org/
/opt/homebrew/Cellar/libomp/15.0.5 (7 files, 1.6MB)
Poured from bottle on 2022-11-19 at 12:16:49
From: https://github.com/Homebrew/homebrew-core/blob/HEAD/Formula/libomp.rb
License: MIT
==> Dependencies
Build: cmake ✘, lit ✘
==> Caveats
libomp is keg-only, which means it was not symlinked into /opt/homebrew,
because it can override GCC headers and result in broken builds.

For compilers to find libomp you may need to set:
export LDFLAGS="-L/opt/homebrew/opt/libomp/lib"
export CPPFLAGS="-I/opt/homebrew/opt/libomp/include"

==> Analytics
install: 192,197 (30 days), 373,389 (90 days), 1,285,192 (365 days)
install-on-request: 24,388 (30 days), 48,013 (90 days), 164,666 (365 days)
build-error: 0 (30 days)

Export LDFLAGS and CPPFLAGS as suggested in brew output:

export LDFLAGS="-L/opt/homebrew/opt/libomp/lib"
export CPPFLAGS="-I/opt/homebrew/opt/libomp/include"

Example

Model fitting

import bitermplus as btm
import numpy as np
import pandas as pd

# IMPORTING DATA
df = pd.read_csv(
    'dataset/SearchSnippets.txt.gz', header=None, names=['texts'])
texts = df['texts'].str.strip().tolist()

# PREPROCESSING
# Obtaining terms frequency in a sparse matrix and corpus vocabulary
X, vocabulary, vocab_dict = btm.get_words_freqs(texts)
tf = np.array(X.sum(axis=0)).ravel()
# Vectorizing documents
docs_vec = btm.get_vectorized_docs(texts, vocabulary)
docs_lens = list(map(len, docs_vec))
# Generating biterms
biterms = btm.get_biterms(docs_vec)

# INITIALIZING AND RUNNING MODEL
model = btm.BTM(
    X, vocabulary, seed=12321, T=8, M=20, alpha=50/8, beta=0.01)
model.fit(biterms, iterations=20)
p_zd = model.transform(docs_vec)

# METRICS
perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, 8)
coherence = btm.coherence(model.matrix_topics_words_, X, M=20)
# or
perplexity = model.perplexity_
coherence = model.coherence_

# LABELS
model.labels_
# or
btm.get_docs_top_topic(texts, model.matrix_docs_topics_)

Results visualization

You need to install tmplot first.

import tmplot as tmp
tmp.report(model=model, docs=texts)

Report interface

Tutorial

There is a tutorial in documentation that covers the important steps of topic modeling (including stability measures and results visualization).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitermplus-0.7.0.tar.gz (264.4 kB view details)

Uploaded Source

File details

Details for the file bitermplus-0.7.0.tar.gz.

File metadata

  • Download URL: bitermplus-0.7.0.tar.gz
  • Upload date:
  • Size: 264.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for bitermplus-0.7.0.tar.gz
Algorithm Hash digest
SHA256 acb0c8b3aa44f2e8498236d1d226abaed395bbbbba1c560dcf9b8c7422690c79
MD5 1f92a49a4d7a86f28189f64700750ebf
BLAKE2b-256 1839797484bdd7d9278611fd9fe4c087e0ec3658b1fd8ee22de3a42f7b5b2745

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page