Skip to main content

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Reason this release was yanked:

test

Project description

bitlinear-pytorch

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Install

pip install bitlinear_pytorch

Usage

import torch
from bitlinear_pytorch import BitLinear, replace_linear_with_bitlinear

class TinyMLP(nn.Module):
    def __init__(self):
        super(TinyMLP, self).__init__()

        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        return self.layers(x)

model = TinyMLP()
replace_linear_with_bitlinear(model)

# or use BitLinear directly
bitlinear = BitLinear(784, 256)

License

MIT

Citation

@misc{ma2024era,
      title={The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits}, 
      author={Shuming Ma and Hongyu Wang and Lingxiao Ma and Lei Wang and Wenhui Wang and Shaohan Huang and Li Dong and Ruiping Wang and Jilong Xue and Furu Wei},
      year={2024},
      eprint={2402.17764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO

  • Implement base BitLinear layer
  • Add example usage
  • Implement memory efficient weight encoding/decoding
  • Implement Fast Inference (CUDA/CPU/VHDL)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitlinear-pytorch-0.0.2.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

bitlinear_pytorch-0.0.2-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file bitlinear-pytorch-0.0.2.tar.gz.

File metadata

  • Download URL: bitlinear-pytorch-0.0.2.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for bitlinear-pytorch-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f92551bfb75bda4d78adde3b2faa7ce6ae9fcad8fda2185cef34d3bc446aa779
MD5 58086e2c850a1f6ce4ff36c7640d928e
BLAKE2b-256 5fea20d2e1243e3fa75e804f1f8fd4d95ce67aa774515b56ac2b00faeda46a56

See more details on using hashes here.

File details

Details for the file bitlinear_pytorch-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for bitlinear_pytorch-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 cd69bc7674fdba317a925574304bccff09640d97edfbc5c6f9617a219dd9a25b
MD5 d6ec462bdfdada163cc6bc34f0869043
BLAKE2b-256 a4926e59ce19b357ecb176d3cca21f14cdfea48cd5caa0a8578c1356a68b4dd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page