Skip to main content

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Project description

bitlinear-pytorch

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Install

pip install bitlinear_pytorch

Usage

import torch
from bitlinear_pytorch import BitLinear, replace_linear_with_bitlinear

class TinyMLP(nn.Module):
    def __init__(self):
        super(TinyMLP, self).__init__()

        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        return self.layers(x)

model = TinyMLP()
replace_linear_with_bitlinear(model)

# or use BitLinear directly
bitlinear = BitLinear(784, 256)

License

MIT

Citation

@misc{ma2024era,
      title={The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits}, 
      author={Shuming Ma and Hongyu Wang and Lingxiao Ma and Lei Wang and Wenhui Wang and Shaohan Huang and Li Dong and Ruiping Wang and Jilong Xue and Furu Wei},
      year={2024},
      eprint={2402.17764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO

  • Implement base BitLinear layer
  • Add example usage
  • Setup Github Actions workflow
  • Implement memory efficient weight encoding/decoding
  • Implement Fast Inference (CUDA/CPU/VHDL)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitlinear-pytorch-0.1.0.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

bitlinear_pytorch-0.1.0-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file bitlinear-pytorch-0.1.0.tar.gz.

File metadata

  • Download URL: bitlinear-pytorch-0.1.0.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for bitlinear-pytorch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1c449eee2ff285f92763c5f96a9c279a00412a22a28ed96544838fa84341c6f2
MD5 8e18e1f6f012527d30bb2c7477697f07
BLAKE2b-256 b409f46396c9ce34d56cb392e07afcba457aa55a5f1722a2aa900c15b397e7c3

See more details on using hashes here.

File details

Details for the file bitlinear_pytorch-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for bitlinear_pytorch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6d46a47055c287ed9d1f430fa1100bff22919319dd3c9473561a5693c3548cb5
MD5 6654a80092818b3935a6079975a691a5
BLAKE2b-256 ed8d41a12e7b08e80172268effc5179c283de986ef0c9538d5dad76305f8ca8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page