Skip to main content

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Project description

bitlinear-pytorch

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Install

pip install bitlinear_pytorch

Usage

import torch
from bitlinear_pytorch import BitLinear, replace_linear_with_bitlinear

class TinyMLP(nn.Module):
    def __init__(self):
        super(TinyMLP, self).__init__()

        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        return self.layers(x)

model = TinyMLP()
replace_linear_with_bitlinear(model)

# or use BitLinear directly
bitlinear = BitLinear(784, 256)

License

MIT

Citation

@misc{ma2024era,
      title={The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits}, 
      author={Shuming Ma and Hongyu Wang and Lingxiao Ma and Lei Wang and Wenhui Wang and Shaohan Huang and Li Dong and Ruiping Wang and Jilong Xue and Furu Wei},
      year={2024},
      eprint={2402.17764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO

  • Implement base BitLinear layer
  • Add example usage
  • Setup Github Actions workflow
  • Implement memory efficient weight encoding/decoding
  • Implement Fast Inference (CUDA/CPU/VHDL)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitlinear-pytorch-0.2.0.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

bitlinear_pytorch-0.2.0-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file bitlinear-pytorch-0.2.0.tar.gz.

File metadata

  • Download URL: bitlinear-pytorch-0.2.0.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for bitlinear-pytorch-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b0bc72becb47a7eb3fe7b56349d6558dbefc67ce90fd79abb4fdefae60aa0d1c
MD5 20dd67eab57a8c01e27ddc107b49d58d
BLAKE2b-256 5c4b49f71283a4cf8cae08818f02574f61256b985d296ab5dc9383808ffa5a69

See more details on using hashes here.

File details

Details for the file bitlinear_pytorch-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for bitlinear_pytorch-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a404b4321d30438ee12f6570da6fe895c0558591c39733d499b044e80a4644e3
MD5 549a34a97b2fcd1db03eab74c1127358
BLAKE2b-256 951ff81c09de9e53a977049fa9a17b5341560aa7e7b0679d04cc6c9add417e08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page