Skip to main content

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Project description

bitlinear-pytorch

Implementation of the BitLinear layer from: The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Install

pip install bitlinear-pytorch

Usage

import torch
from bitlinear_pytorch import BitLinear, replace_linear_with_bitlinear

class TinyMLP(nn.Module):
    def __init__(self):
        super(TinyMLP, self).__init__()

        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        return self.layers(x)

model = TinyMLP()
replace_linear_with_bitlinear(model)

# or use BitLinear directly
bitlinear = BitLinear(784, 256)

License

MIT

Citation

@misc{ma2024era,
      title={The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits}, 
      author={Shuming Ma and Hongyu Wang and Lingxiao Ma and Lei Wang and Wenhui Wang and Shaohan Huang and Li Dong and Ruiping Wang and Jilong Xue and Furu Wei},
      year={2024},
      eprint={2402.17764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO

  • Implement base BitLinear layer
  • Add example usage
  • Setup Github Actions workflow
  • Implement memory efficient weight encoding/decoding
  • Implement Fast Inference (CUDA/CPU/VHDL)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitlinear-pytorch-0.3.0.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

bitlinear_pytorch-0.3.0-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file bitlinear-pytorch-0.3.0.tar.gz.

File metadata

  • Download URL: bitlinear-pytorch-0.3.0.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for bitlinear-pytorch-0.3.0.tar.gz
Algorithm Hash digest
SHA256 50db8b86cdfd1bade3e6e3be1e51bb71e66dbc8b4790d94c13bc9f71db776a86
MD5 ee5fbcc50a06287c2074fa928123deff
BLAKE2b-256 6666b8c995d62a47bf8674b41ece35986b3a9163617258e80989817877498029

See more details on using hashes here.

File details

Details for the file bitlinear_pytorch-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for bitlinear_pytorch-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f0a28efeecf69204bb8c06811e960b27b632915f7f54684ec2466f6c04a5f0f6
MD5 5a0fffda5826dbc30a81f56a7ec32712
BLAKE2b-256 7b662e81724543b710579cf742f01bc82f34034a142007de15158601bc21afa3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page