Skip to main content

8-bit optimizers and quantization routines.

Project description

bitsandbytes

Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions.

Paper -- Video -- Docs

TL;DR

Installation:

  1. Note down version: conda list | grep cudatoolkit
  2. Replace 111 with the version that you see: pip install bitsandbytes-cuda111

Usage:

  1. Comment out optimizer: #torch.optim.Adam(....)
  2. Add 8-bit optimizer of your choice bnb.optim.Adam8bit(....) (arguments stay the same)
  3. Replace embedding layer if necessary: torch.nn.Embedding(..) -> bnb.nn.Embedding(..)

Features

  • 8-bit Optimizers: Adam, AdamW, RMSProp, LARS, LAMB (saves 75% memory)
  • Stable Embedding Layer: Improved stability through better initialization, and normalization
  • 8-bit quantization: Quantile, Linear, and Dynamic quantization
  • Fast quantile estimation: Up to 100x faster than other algorithms

Requirements & Installation

Requirements: anaconda, cudatoolkit, pytorch Hardware requirements: NVIDIA Maxwell GPU or newer (>=GTX 9XX) Supported CUDA versions: 9.2 - 11.3

The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the "Get Started" instructions on the official website.

bitsandbytes is compatible with all major PyTorch releases and cudatoolkit versions, but for now, you need to select the right version manually. To do this run:

conda list | grep cudatoolkit

and take note of the Cuda version that you have installed. Then you can install bitsandbytes via:

# choices: {cuda92, cuda 100, cuda101, cuda102, cuda110, cuda111, cuda113}
# replace XXX with the respective number
pip install bitsandbytes-cudaXXX

To check if your installation was successful, you can execute the following command, which runs a single bnb Adam update.

wget https://gist.githubusercontent.com/TimDettmers/1f5188c6ee6ed69d211b7fe4e381e713/raw/4d17c3d09ccdb57e9ab7eca0171f2ace6e4d2858/check_bnb_install.py && python check_bnb_install.py

Using bitsandbytes

Using the 8-bit Optimizers

With bitsandbytes 8-bit optimizers can be used by changing a single line of code in your codebase. For NLP models we recommend also to use the StableEmbedding layers (see below) which improves results and helps with stable 8-bit optimization. To get started with 8-bit optimizers, it is sufficient to replace your old optimizer with the 8-bit optimizer in the following way:

import bitsandbytes as bnb

# adam = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # comment out old optimizer
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # add bnb optimizer
adam = bnb.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995), optim_bits=8) # equivalent


torch.nn.Embedding(...) ->  bnb.nn.StableEmbedding(...) # recommended for NLP models

Note that by default all parameter tensors with less than 4096 elements are kept at 32-bit even if you initialize those parameters with 8-bit optimizers. This is done since such small tensors do not save much memory and often contain highly variable parameters (biases) or parameters that require high precision (batch norm, layer norm). You can change this behavior like so:

# parameter tensors with less than 16384 values are optimized in 32-bit
# it is recommended to use multiplies of 4096
adam = bnb.optim.Adam8bit(model.parameters(), min_8bit_size=16384) 

Change Bits and other Hyperparameters for Individual Parameters

If you want to optimize some unstable parameters with 32-bit Adam and others with 8-bit Adam, you can use the GlobalOptimManager. With this, we can also configure specific hyperparameters for particular layers, such as embedding layers. To do that, we need two things: (1) register the parameter while they are still on the CPU, (2) override the config with the new desired hyperparameters (anytime, anywhere). See our guide for more details

Fairseq Users

To use the Stable Embedding Layer, override the respective build_embedding(...) function of your model. Make sure to also use the --no-scale-embedding flag to disable scaling of the word embedding layer (nor replaced with layer norm). You can use the optimizers by replacing the optimizer in the respective file (adam.py etc.).

Release and Feature History

For upcoming features and changes and full history see Patch Notes.

Errors

  1. RuntimeError: CUDA error: no kernel image is available for execution on the device. Solution
  2. _fatbinwrap.. Solution

Compile from source

To compile from source, please follow the compile_from_source.md instructions.

License

The majority of bitsandbytes is licensed under MIT, however portions of the project are available under separate license terms: Pytorch is licensed under the BSD license.

We thank Fabio Cannizzo for his work on FastBinarySearch which we use for CPU quantization.

Citation

If you found this library and 8-bit optimizers or quantization routines useful, please consider citing out work.

@misc{dettmers2021optim8bit,
      title={8-bit Optimizers via Block-wise Quantization},
      author={Tim Dettmers and Mike Lewis and Sam Shleifer and Luke Zettlemoyer},
      year={2021},
      eprint={2110.02861},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bitsandbytes-cuda113-0.26.0.post2.tar.gz (4.2 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file bitsandbytes-cuda113-0.26.0.post2.tar.gz.

File metadata

File hashes

Hashes for bitsandbytes-cuda113-0.26.0.post2.tar.gz
Algorithm Hash digest
SHA256 f5cb95bb8643fc9409519384828543a07578dcc7ea93f35360a49457693d060b
MD5 18899ce838c6e54a010e16eaae29db3a
BLAKE2b-256 21c1bb6e57445371468a89b48e687c7ef98d3df98a06ce746b667fa96a9d850a

See more details on using hashes here.

File details

Details for the file bitsandbytes_cuda113-0.26.0.post2-py3-none-any.whl.

File metadata

File hashes

Hashes for bitsandbytes_cuda113-0.26.0.post2-py3-none-any.whl
Algorithm Hash digest
SHA256 8ddff53116169c13b12860599f303951d0af5a057939c61fb8205106423deac6
MD5 dc9edaf64e7b422253cb87e2675cf394
BLAKE2b-256 16ff522d061c4d5ac708d2c91d3a459b350e548f2e9771206ce32ac7930cece8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page