Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling)
Project description
BIVA (PyTorch)
Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables forGenerative Modeling) for binarized MNIST and CIFAR. The original Tensorflow implementation can be found here.
run the experiments
conda create --name biva python=3.7
conda activate biva
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python run_deepvae.py --dataset binmnist --q_dropout 0.5 --p_dropout 0.5 --device cuda
CUDA_VISIBLE_DEVICES=0 python run_deepvae.py --dataset cifar10 --q_dropout 0.2 --p_dropout 0 --device cuda
Citation
@article{maale2019biva,
title={BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling},
author={Lars Maaløe and Marco Fraccaro and Valentin Liévin and Ole Winther},
year={2019},
eprint={1902.02102},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
Pip package
install requirements
pytorch 1.3.0
torchvision
matplotlib
tensorboard
booster-pytorch==0.0.2
install package
pip install git+https://github.com/vlievin/biva-pytorch.git
build deep VAEs
import torch
from torch.distributions import Bernoulli
from biva import DenseNormal, ConvNormal
from biva import VAE, LVAE, BIVA
# build a 2 layers VAE for binary images
# define the stochastic layers
z = [
{'N': 8, 'kernel': 5, 'block': ConvNormal}, # z1
{'N': 16, 'block': DenseNormal} # z2
]
# define the intermediate layers
# each stage defines the configuration of the blocks for q_(z_{l} | z_{l-1}) and p_(z_{l-1} | z_{l})
# each stage is defined by a sequence of 3 resnet blocks
# each block is degined by a tuple [filters, kernel, stride]
stages = [
[[64, 3, 1], [64, 3, 1], [64, 3, 2]],
[[64, 3, 1], [64, 3, 1], [64, 3, 2]]
]
# build the model
model = VAE(tensor_shp=(-1, 1, 28, 28), stages=stages, latents=z, dropout=0.5)
# forward pass and data-dependent initialization
x = torch.empty((8, 1, 28, 28)).uniform_().bernoulli()
data = model(x) # data = {'x_' : p(x|z), z \sim q(z|x), 'kl': [kl_z1, kl_z2]}
# sample from prior
data = model.sample_from_prior(N=16) # data = {'x_' : p(x|z), z \sim p(z)}
samples = Bernoulli(logits=data['x_']).sample()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
biva-pytorch-0.1.4.tar.gz
(26.1 kB
view details)
File details
Details for the file biva-pytorch-0.1.4.tar.gz
.
File metadata
- Download URL: biva-pytorch-0.1.4.tar.gz
- Upload date:
- Size: 26.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c9e12b49146c50d2c8c2f9ae3a8e5aa518f70bbb2023e2d3c3e93798646ada8 |
|
MD5 | 8e3638ea0e6c63a31d3876b51c5325e0 |
|
BLAKE2b-256 | 774ed0511f08908d7fe717a96feee637f5bae5dde3cde26b00f0b14dba5b6b35 |