Skip to main content

Llm agent to search within a graph

Project description

code-base-agent

Introduction

This repo introduces a method to represent a local code repository as a graph structure. The objective is to allow an LLM to traverse this graph to understand the code logic and flow. Providing the LLM with the power to debug, refactor, and optimize queries. However, several tasks are yet unexplored.

Technology Stack

We used a combination of llama-index, CodeHierarchy module, and tree-sitter-languages for parsing code into a graph structure, Neo4j for storing and querying the graph data, and langchain to create the agents.

Installation

Install the package:

pip install blar-graph

Set the env variables

NEO4J_URI=neo4j+s://YOUR_NEO4J.databases.neo4j.io
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=YOUR_NEO4J_PASSWORD
OPENAI_API_KEY=YOUR_OPEN_AI_KEY

If you are new to Neo4j you can deploy a free instance of neo4j with Aura. Also you can host your own version in AWS or GCP

Quick start guide

To build the graph, you have to instantiate the graph manager and constructor. The graph manager handles the connection with Neo4j, and the graph constructor processes the directory input to create the graph.

import traceback
import uuid

from blar_graph.db_managers import Neo4jManager
from blar_graph.graph_construction.core.graph_builder import GraphConstructor

repoId = str(uuid.uuid4())
entityId = str(uuid.uuid4())
graph_manager = Neo4jManager(repoId, entityId)

try:
    graph_constructor = GraphConstructor(graph_manager)
    graph_constructor.build_graph("YOUR_LOCAL_DIRECTORY")
    graph_manager.close()
except Exception as e:
    print(e)
    print(traceback.format_exc())
    graph_manager.close()

Now you can use our agent tools, or build your own, to create agents that resolves specific tasks. In the folder 'agents_tools' you will find all our tools (for now is just the Keyword search) and examples of agent implementations. For example, for a debugger agent you could do:

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
    format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import (
    OpenAIToolsAgentOutputParser,
)
from blar_graph.agents_tools.tools.KeywordSearchTool import KeywordSearchTool
from blar_graph.db_managers.base_manager import BaseDBManager
from langchain.agents import AgentExecutor
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0)

system_prompt = """
    You are a code debugger, Given a problem description and an initial function, you need to find the bug in the code.
    You are given a graph of code functions,
    We purposly omitted some code If the code has the comment '# Code replaced for brevity. See node_id ..... '.
    You can traverse the graph by calling the function keword_search.
    Prefer calling the function keword_search with query = node_id, only call it with starting nodes or neighbours.
    Explain why your solution solves the bug. Extensivley traverse the graph before giving an answer
"""


prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            system_prompt,
        ),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)

tools = [KeywordSearchTool(db_manager=graph_manager)]
llm_with_tools = llm.bind_tools(tools)

agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)

Now you can ask your agent to perform a debugging process.

list(
    agent.stream(
        {
            "input": """
            The directory nodes generates multiples connections,
            it doesn't distinguish between different directories, can you fix it?
            The initial functions is run
            """
        }
    )
)

You can find more examples in the folder 'examples'. They are comprehensive jupiter notebooks that guide you from creating the graph to deploying the agent.

Note: The supported languages for now are python, javascript and typescript. We are going to include C and C++ (or other language) if you ask for it enough. So don't hesitate to reach out through the issues or directly to benjamin@blar.io or jose@blar.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blar_graph-1.1.4.tar.gz (27.3 kB view details)

Uploaded Source

Built Distribution

blar_graph-1.1.4-py3-none-any.whl (39.9 kB view details)

Uploaded Python 3

File details

Details for the file blar_graph-1.1.4.tar.gz.

File metadata

  • Download URL: blar_graph-1.1.4.tar.gz
  • Upload date:
  • Size: 27.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Linux/6.8.0-45-generic

File hashes

Hashes for blar_graph-1.1.4.tar.gz
Algorithm Hash digest
SHA256 47a6cb57322c361cfa19a29fa6cf1a513cbe6ede170cf378471fa5a444b10091
MD5 18094cf500709cf487db4a6b13512e91
BLAKE2b-256 b80bcf547b86e96000e0fd9c0c0edb402e4bdcf9a6e94186c335ff8ff576ee93

See more details on using hashes here.

File details

Details for the file blar_graph-1.1.4-py3-none-any.whl.

File metadata

  • Download URL: blar_graph-1.1.4-py3-none-any.whl
  • Upload date:
  • Size: 39.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Linux/6.8.0-45-generic

File hashes

Hashes for blar_graph-1.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 68bb533993cbfa194baa599c6febeca505e9c9eda7045cdf60828b879e7794e2
MD5 3c5a183fd6478de008d11243b993929e
BLAKE2b-256 0d135b9402e0b8e2170f7657e61aa8c12f1f5b84ebbc184f87c00307c95535d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page