Skip to main content

No project description provided

Project description

Blended Dataset Loop

This repository contains a simple loop to compute a balanced ordering of dataset indices to train on. The resulting ordering ensures the data distribution is similar among batches. The loop is implemented in Rust for performance reasons and can be consumed as part of a Python package.

The package uses cffi (rather than e.g. PyO3) in order to be compatible with different Python versions.

Requirements

  • Conda (for Python)
  • Cargo with nightly Rust

Setup

Create a conda environment as follows:

conda create -n blended_dataset_loop python=3.9 -y
conda activate blended_dataset_loop

Install Rust nightly

rustup override set nightly-2024-02-03

Install the Python dev-dependencies:

pip install 'maturin[patchelf]'
pip install '.[dev]'

Develop

After changing the Rust code, run:

maturin develop

or, for release mode

maturin develop --release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blended_dataset_loop-0.1.0.tar.gz (8.4 kB view details)

Uploaded Source

Built Distributions

blended_dataset_loop-0.1.0-py3-none-win_amd64.whl (142.1 kB view details)

Uploaded Python 3 Windows x86-64

blended_dataset_loop-0.1.0-py3-none-win32.whl (137.4 kB view details)

Uploaded Python 3 Windows x86

blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

blended_dataset_loop-0.1.0-py3-none-macosx_11_0_arm64.whl (239.5 kB view details)

Uploaded Python 3 macOS 11.0+ ARM64

blended_dataset_loop-0.1.0-py3-none-macosx_10_12_x86_64.whl (252.8 kB view details)

Uploaded Python 3 macOS 10.12+ x86-64

File details

Details for the file blended_dataset_loop-0.1.0.tar.gz.

File metadata

  • Download URL: blended_dataset_loop-0.1.0.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for blended_dataset_loop-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e8e68830ae567cafc913a4285e0487f1ba199f0d25d9c8b213a2722ddd0140fc
MD5 f4ea8b6b5ec7339d9aab318d8f32ff1f
BLAKE2b-256 fc6623bd29d9c4df821069c90d1cb89a966a98f3bcfdc02bdde180e1e6c2e62f

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 ccce27bddc5d4ca73702ee5993f9be1bdfb86df41acb7cb3d9c676874ef2d52e
MD5 75450516f2563cea615270efe1dd50f8
BLAKE2b-256 024ca13c98b970c33d6d324b523d15297c27f775224ab0ff66ced07ba53bedc0

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-win32.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-win32.whl
Algorithm Hash digest
SHA256 eab3fd5615bd5a6472acff5ead32bf985ec9b7718f1435ac62180a5680bcb095
MD5 6b8588cb46add3727ca2e350045bb9b2
BLAKE2b-256 e56d6e608ed4613d7e0b05bd816d07c7809bcbca64e27a40d5ebb118115b603e

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ef15d82b14ce589697194bc4ba5f539a2fa775c55ea1ea3dc328c0ccf13a9c0
MD5 5a73317e85c446475796a08901a298d1
BLAKE2b-256 02f2811b53a255ca9bd5a1f9f38e0c1edd9ec92627d8070c219904d4bb799895

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9154802989162b04400a227511a708805a668bf9556e50d1c5237dc5ceb58a90
MD5 6eed397570a75cfa6eb86a09594e543a
BLAKE2b-256 b769f506d0485217eebbe3824af4417ac66d027ced7b3bfdb9708be5e6719a6f

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ef47f5c4743a1b85e4d1267acfb0eac77bf57354cbd4be5f7a47ea39e8eac5c
MD5 ab2ec1703a2c1c4e042ed802912421f1
BLAKE2b-256 cc487acc2d296b3a7ed6137e3711b11729c832958eadff824958ce150177d9f5

See more details on using hashes here.

File details

Details for the file blended_dataset_loop-0.1.0-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for blended_dataset_loop-0.1.0-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0ea8952aa7d5ac27740bd7772f5b8073c862aac5760b8d50ca0cfd7a31e29356
MD5 0a261794e4f14fb3d48ad2d7939c0706
BLAKE2b-256 3b5d0a0854131c6d9026fd4aa26c797736505b01cf918ddbd04936c1c0a24a20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page