Skip to main content

PyTorch porting of BLEURT

Project description

bleurt-pytorch

Use BLEURT models in native PyTorch with Transformers.

Getting started

Install with:

pip install git+https://github.com/lucadiliello/bleurt-pytorch.git

Now load your favourite model with:

import torch
from bleurt_pytorch import BleurtConfig, BleurtForSequenceClassification, BleurtTokenizer

config = BleurtConfig.from_pretrained('lucadiliello/BLEURT-20-D12')
model = BleurtForSequenceClassification.from_pretrained('lucadiliello/BLEURT-20-D12')
tokenizer = BleurtTokenizer.from_pretrained('lucadiliello/BLEURT-20-D12')

references = ["a bird chirps by the window", "this is a random sentence"]
candidates = ["a bird chirps by the window", "this looks like a random sentence"]

model.eval()
with torch.no_grad():
    inputs = tokenizer(references, candidates, padding='longest', return_tensors='pt')
    res = model(**inputs).logits.flatten().tolist()
print(res)
# [0.9604414105415344, 0.8080050349235535]

You can find all BLUERT models adapted for PyTorch here. The recommended model is lucadiliello/BLEURT-20, however this model is very large and may require too much resources. BLEURT-20-D12 is smaller but works well enough for most comparisons.

Credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bleurt-pytorch-0.0.1.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

bleurt_pytorch-0.0.1-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file bleurt-pytorch-0.0.1.tar.gz.

File metadata

  • Download URL: bleurt-pytorch-0.0.1.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for bleurt-pytorch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 55c2756517682c43c648c7eb20e6a117d1ec1146d1d1713c1847afbf345d152d
MD5 1a2eae32d6d5057ef3f6178ecf9bb547
BLAKE2b-256 254cb5c8f2f122ec25fdbeb71aa71bf13c48d43793b49a55a4c1ade22393bad6

See more details on using hashes here.

File details

Details for the file bleurt_pytorch-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for bleurt_pytorch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3023bb6a3670cb571994a838f147fe766da53786349ac9a25475fd9cbf3e755b
MD5 3e04b4ff1541be236cf96d1017f4107a
BLAKE2b-256 bce06059b6c9e7efdc8ad058320867a31f4f5aff2c312a4827ca70ebbe19b143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page