Skip to main content

Bayesian Light Source Separator

Project description

Bayesian Light Source Separator (BLISS)

tests codecov.io PyPI

Introduction

BLISS is a Bayesian method for deblending and cataloging light sources. BLISS provides

  • Accurate estimation of parameters in blended field.
  • Calibrated uncertainties through fitting an approximate Bayesian posterior.
  • Scalability of Bayesian inference to entire astronomical surveys.

BLISS uses state-of-the-art variational inference techniques including

  • Amortized inference, in which a neural network maps telescope images to an approximate Bayesian posterior on parameters of interest.
  • Variational auto-encoders (VAEs) to fit a flexible model for galaxy morphology and deblend galaxies.
  • Wake-sleep algorithm to jointly fit the approximate posterior and model parameters such as the PSF and the galaxy VAE.

Installation

BLISS is pip installable with the following command:

pip install bliss-toolkit

and the required dependencies are listed in the [tool.poetry.dependencies] block of the pyproject.toml file.

Installation (Developers)

  1. To use and install bliss you first need to install poetry.

  2. Then, install the fftw library (which is used by galsim). With Ubuntu you can install it by running

sudo apt-get install libfftw3-dev
  1. Install git-lfs if you haven't already installed it for another project:
git-lfs install
  1. Now download the bliss repo and fetch some pre-trained models and test data from git-lfs:
git clone git@github.com:prob-ml/bliss.git
  1. To create a poetry environment with the bliss dependencies satisified, run
cd bliss
poetry install
poetry shell
  1. Verify that bliss is installed correctly by running the tests both on your CPU (default) and on your GPU:
pytest
pytest --gpu
  1. Finally, if you are planning to contribute code to this repository, consider installing our pre-commit hooks so that your code commits will be checked locally for compliance with our coding conventions:
pre-commit install

Latest updates

Galaxies

  • BLISS now includes a galaxy model based on a VAE that was trained on Galsim galaxies.
  • BLISS now includes an algorithm for detecting, measuring, and deblending galaxies.

Stars

References

Mallory Wang, Ismael Mendoza, Cheng Wang, Camille Avestruz, and Jeffrey Regier. Statistical Inference for Coadded Astronomical Images. Machine Learning and the Physical Sciences workshop, NeurIPS 2022. arXiv:2211.09300

Derek Hansen, Ismael Mendoza, Runjing Liu, Ziteng Pang, Zhe Zhao, Camille Avestruz, and Jeffrey Regier. Scalable Bayesian Inference for Detection and Deblending in Astronomical Images. ICML Workshop on Machine Learning for Astrophysics, 2022. arXiv:2207.05642

Runjing Liu, Jon D. McAuliffe, Jeffrey Regier, and The LSST Dark Energy Science Collaboration. Variational Inference for Deblending Crowded Starfields, 2021. arXiv:2102.02409

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bliss_toolkit-0.3.tar.gz (66.7 kB view details)

Uploaded Source

Built Distribution

bliss_toolkit-0.3-py3-none-any.whl (77.6 kB view details)

Uploaded Python 3

File details

Details for the file bliss_toolkit-0.3.tar.gz.

File metadata

  • Download URL: bliss_toolkit-0.3.tar.gz
  • Upload date:
  • Size: 66.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-78-generic

File hashes

Hashes for bliss_toolkit-0.3.tar.gz
Algorithm Hash digest
SHA256 1b548be57a7fb48499aa0c922380cdf42f6b3f4d6ad69a582429fc0471f0b22f
MD5 4dccc7511905de3e0bf9c45b17c19341
BLAKE2b-256 1742d32d35deff38cb04d8526106f444346a3e4ffe74dbbe553313c4ab24a165

See more details on using hashes here.

File details

Details for the file bliss_toolkit-0.3-py3-none-any.whl.

File metadata

  • Download URL: bliss_toolkit-0.3-py3-none-any.whl
  • Upload date:
  • Size: 77.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-78-generic

File hashes

Hashes for bliss_toolkit-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ef5cdcd13fb0d27477dd046a4542bbed445a3afa24c407b58ab8a2713b7eb512
MD5 206187d99d69aec5e604ffbb0fa8a3b9
BLAKE2b-256 166907c8dec44a50115529d5db1195fdcd0163da0eef4d41262bf1f34e47cd4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page