Skip to main content

A lightweight library for operations on blocksparse matrices in PyTorch.

Project description

blksprs

GitHub Release Python Version

Overview

A lightweight and efficient library for operations on block-sparse matrices in PyTorch using Triton.

Currently supported operations (includes gradient calculation):

  • Matrix multiplication
  • Softmax
  • Transpose
  • Gather
  • Scatter (supports either no reduction or summation, gradients are only available for summation)
  • Repeat (supports target sparsity layout)
  • Repeat Interleave (supports target sparsity layout)
  • Splitting and merging of matrices along the last dimension
  • Conversion to and from sparse form
  • Conversion to different sparsity layouts and different sparsity block sizes

As with this library sparse matrices are represented using a tuple of (matrix, sparsity_layout, sparsity_block_size), any element-wise operations can be applied in regular torch-like fashion. These include, e.g.,

  • Element-wise addition and subtraction
  • Element-wise multiplication and division
  • Element-wise exponentiation
  • ...

Note that in order to correctly apply element-wise operations between two sparse tensors their sparsity layouts have to match.

Further helpful operations (included in the bs.misc module) that do not support gradient calculation include:

  • Row-wise sum, max, addition, and subtraction
  • Broadcast addition and subtraction between slices

Furthermore, the library provides a set of utility functions for the creation of sparsity layouts based on existing dense tensors and for the scatter operation (module bs.layout), as well as utility functions to ensure correct input dimensionality (module bs.util).

Installation

Note that due to the dependency on Triton this library is only compatible with the Linux platform.

We recommend installing blksprs from PyPI using pip:

pip install blksprs

Dependencies

Changelog

See CHANGELOG.md for a detailed changelog.

Usage

We provide an example below to demonstrate the usage of the library. For more detailed examples, please refer to the test cases which cover all implemented operations and functions. The example below can also be found in the test cases.

import torch
import blksprs as bs


def test_readme():
    # Set up parameters (batch size, number of heads, dimensions for matrices (m, k) and (n, k))
    b, h, m, n, k = 2, 4, 64, 64, 16

    # Percentage of blocks that will be sparse in the output for demonstration purposes
    sparsity_percentage = 25

    # Must be a power of two, greater than or equal to 16 for matmul, and divide m, n, and k
    sparsity_block_size = 16

    # Must be a power of two and smaller than or equal to sparsity_block_size
    # If it is set to ``none`` a value will be chosen automatically
    triton_block_size = None

    # Initialise random (dense) tensors
    x = torch.randn(size=(b, h, m, k), device="cuda")
    y = torch.randn(size=(b, h, n, k), device="cuda").transpose(-1, -2).contiguous()

    # Convert tensors to three-dimensional (dense) tensors since Triton can only handle tensors of exactly three dimensions
    x_dense, x_shape_original = bs.util.do_shape_blocksparse(x)
    y_dense, y_shape_original = bs.util.do_shape_blocksparse(y)

    # Create sparsity layouts from existing tensors
    sparsity_layout_x = bs.layout.build_sparsity_layout(x_dense, sparsity_block_size,
                                                        triton_block_size=triton_block_size)
    sparsity_layout_y = bs.layout.build_sparsity_layout(y_dense, sparsity_block_size,
                                                        triton_block_size=triton_block_size)

    # Create random sparsity layout for output tensor
    sparsity_layout_o = _get_random_sparsity_layout(b * h, m, n, sparsity_block_size, sparsity_percentage)

    # Convert tensors to sparse tensors for matrix multiplication
    x_sparse = bs.to_sparse(x_dense, sparsity_layout_x, sparsity_block_size, triton_block_size=triton_block_size)
    y_sparse = bs.to_sparse(y_dense, sparsity_layout_y, sparsity_block_size, triton_block_size=triton_block_size)

    # Perform matrix multiplication
    o_sparse = bs.matmul(x_sparse, sparsity_layout_x, y_sparse, sparsity_layout_y, sparsity_layout_o,
                         sparsity_block_size,
                         triton_block_size=triton_block_size)

    # Apply element-wise operation
    o_sparse = torch.add(o_sparse, 1)

    o_dense = bs.to_dense(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)

    # Sanity check
    o_torch = torch.matmul(x_dense, y_dense)
    o_torch = torch.add(o_torch, 1)

    # Perform round trip to set sparse blocks to 0
    o_torch_round_trip = bs.to_dense(
        bs.to_sparse(o_torch, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size),
        sparsity_layout_o, sparsity_block_size, fill_value=0, triton_block_size=triton_block_size)

    # Assert that the output is correct
    assert torch.allclose(o_dense, o_torch_round_trip, atol=2e-2)  # Note that small numerical differences are expected

    # Assert that the output has the correct sparsity layout
    actual_sparsity_layout_o = bs.layout.build_sparsity_layout(o_dense, sparsity_block_size,
                                                               triton_block_size=triton_block_size)
    assert torch.allclose(actual_sparsity_layout_o.to(torch.int), sparsity_layout_o)

    # Convert output tensor back to original shape
    o = bs.util.undo_shape_blocksparse(o_dense, x_shape_original)

    # Other available functions
    bs.transpose(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)
    bs.softmax(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)
    bs.misc.row_wise_sum(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)
    bs.misc.row_wise_max(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)


def _get_random_sparsity_layout(b, m, n, sparsity_block_size, sparsity_percentage):
    """Helper function, creates a random sparsity layout for a given shape with a given percentage of blocks marked as sparse.

    """
    m_s = m // sparsity_block_size
    n_s = n // sparsity_block_size

    sparsity_layout = torch.ones(size=(b, m_s, n_s), device="cuda", dtype=torch.int)

    num_zero_elements = int(m_s * n_s * (sparsity_percentage / 100))
    for b_i in range(b):
        indices = torch.randperm(m_s * n_s)[:num_zero_elements]
        sparsity_layout[b_i, indices // n_s, indices % n_s] = 0

    return sparsity_layout

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blksprs-1.8.1.tar.gz (24.0 kB view details)

Uploaded Source

Built Distribution

blksprs-1.8.1-py3-none-any.whl (35.2 kB view details)

Uploaded Python 3

File details

Details for the file blksprs-1.8.1.tar.gz.

File metadata

  • Download URL: blksprs-1.8.1.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for blksprs-1.8.1.tar.gz
Algorithm Hash digest
SHA256 21bab20020d2bbb022343d36b460c887c14998a28c327400ebb613f684d5342e
MD5 98dccca55078c2fdf76b8289e2704481
BLAKE2b-256 950d75b8d8ea11bc84a32f97a2b74a3509c82eac2068bc3869fbb77a68bc4734

See more details on using hashes here.

File details

Details for the file blksprs-1.8.1-py3-none-any.whl.

File metadata

  • Download URL: blksprs-1.8.1-py3-none-any.whl
  • Upload date:
  • Size: 35.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for blksprs-1.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7031f5e90673118f02fbcff5ade4b655c4641770a79b802656d542cd2611444b
MD5 e003e60e1089f50640848dfb01e08e8c
BLAKE2b-256 c819961da3ae961ec3d138a472d88a59e44757e80a69e00ca52186168dc6b60f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page