Skip to main content

Bloatectomy: a method for the identification and removal of duplicate text in the bloated notes of electronic health records and other documents.

Project description

Bloatectomy

Bloatectomy: a method for the identification and removal of duplicate text in the bloated notes of electronic health records and other documents. Takes in a list of notes or a single file (.docx, .txt, .rtf, etc) or single string to be marked for duplicates. Marked output and tokens are output.

Requirements

  • Python>=3.7.x (in order for the regular expressions to work correctly)
  • re
  • sys
  • pandas (optional, only necessary if using MIMIC III data)
  • docx (optional, only necessary if input or output is a word/docx file)

Installation

using anaconda or miniconda

conda install -c summerkrankin bloatectomy

using pip via PyPI
make sure to install it to python3 if your default is python2

python3 -m pip install bloatectomy

using pip via github

python3 -m pip install git+git://github.com/MIT-LCP/bloatectomy

manual install by cloning the repository

git clone git://github.com/MIT-LCP/bloatectomy
cd bloatectomy
python3 setup.py install

Examples

To run bloatectomy on a sample string with the following options:

  • highlighting duplicates
  • display raw results
  • output file as html
  • output file of numbered tokens:
from bloatectomy import bloatectomy

text = '''Assessment and Plan
61 yo male Hep C cirrhosis
Abd pain:
-other labs: PT / PTT / INR:16.6//    1.5, CK / CKMB /
ICU Care
-other labs: PT / PTT / INR:16.6//    1.5, CK / CKMB /
Assessment and Plan
'''

bloatectomy(text, style='highlight', display=True, filename='sample_txt_highlight_output', output='html', output_numbered_tokens=True)

To use with example text or load ipynb examples, download the repository or just the bloatectomy_examples folder

cd bloatectomy_examples
from bloatectomy import bloatectomy

bloatectomy('./input/sample_text.txt',
            style='highlight', display=False,
            filename='./output/sample_txt_highlight_output',
            output='html',
            output_numbered_tokens=True,
            output_original_tokens=True)

Documentation

The paper is located at TBA

class bloatectomy(input_text,
                  path = '',
                  filename='bloatectomized_file',
                  display=False,
                  style='highlight',
                  output='html',
                  output_numbered_tokens=False,
                  output_original_tokens=False,
                  regex1=r"(.+?\.[\s\n]+)",
                  regex2=r"(?=\n\s*[A-Z1-9#-]+.*)",
                  postgres_engine=None,
                  postgres_table=None)

Parameters

input_text: file, str, list
An input document (.txt, .rtf, .docx), a string of text, or list of hadm_ids for postgres mimiciii database or the raw text.

style: str, optional, default=highlight
Method for denoting a duplicate. The following are allowed: highlight, bold, remov.

filename: str, optional, default=bloatectomized_file A string to name output file of the bloat-ectomized document.

path: str, optional, default=' '
The directory for output files.

output_numbered_tokens: bool, optional, default=False
If set to True, a .txt file with each token enumerated and marked for duplication, is output as [filename]_token_numbers.txt. This is useful when diagnosing your own regular expression for tokenization or testing the remov option for style.

output_original_tokens: bool, optional, default=False
If set to True, a .txt file with each original (non-marked) token enumerated but not marked for duplication, is output as [filename]_original_token_numbers.txt.

display: bool, optional, default=False
If set to True, the bloatectomized text will display in the console on completion.

regex1: str, optional, default=r"(.+?\.[\s\n]+)"
The regular expression for the first tokenization. Split on a period (.) followed by one or more white space characters (space, tab, line breaks) or a line feed character (\n). This can be replaced with any valid regular expression to change the way tokens are created.

regex2: str, optional, default=r"(?=\n\s*[A-Z1-9#-]+.*)"
The regular expression for the second tokenization. Split on any newline character (\n) followed by an uppercase letter, a number, or a dash. This can be replaced with any valid regular expression to change how sub-tokens are created.

postgres_engine: str, optional The postgres connection. Only relevant for use with the MIMIC III dataset. When data is pulled from postgres the hadm_id of the file will be appended to the filename if set or the default bloatectomized_file. See the jupyter notebook mimic_bloatectomy_example for the example code.

postgres_table: str, optional The name of the postgres table containing the concatenated notes. Only relevant for use with the MIMIC III dataset. When data is pulled from postgres the hadm_id of the file will be appended to the filename if set or the default bloatectomized_file. See the jupyter notebook mimic_bloatectomy_example for the example code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bloatectomy-0.0.12.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

bloatectomy-0.0.12-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file bloatectomy-0.0.12.tar.gz.

File metadata

  • Download URL: bloatectomy-0.0.12.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for bloatectomy-0.0.12.tar.gz
Algorithm Hash digest
SHA256 4f84db2264a3e337b13bde94c1154e1e46f9efaa3c501b26b5ee67f095f73363
MD5 70c8f9c9b0bab52544cda810b2d4f89c
BLAKE2b-256 c0371a9565a8d7693c8219e5419830939f0e1f06711d4da7baf86f71418a069f

See more details on using hashes here.

File details

Details for the file bloatectomy-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: bloatectomy-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for bloatectomy-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 f6ec103edf55459e46972572d5b9cb82a08814113cd47f44417214194a9f2657
MD5 bfbb321c6a9433d7c0e1d2d15445f877
BLAKE2b-256 411369842df44998b329f80287f73c33e742f428e37a0c2a96b560a62ed2c799

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page