Client library to interface with multiple bloomd servers
Project description
bloom-python-driver
=========
Pybloom provides a Python client library to interface with
bloomd servers. The library supports multiple bloomd servers,
and automatically handles filter discovery and sharding.
Features
--------
* Provides a simple API for using bloomd
* Allows for using multiple bloomd servers
- Auto-discovers filter locations
- Balance the creation of new filters
- Explicitly name the location to make filters
* Command pipelining to reduce latency
Install
-------
Download and install from source:
python setup.py install
Example
------
Using pybloom is very simple, and is similar to using native sets::
from pybloom import BloomdClient
# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])
# Get or create the foobar filter
foobar = client.create_filter("foobar")
# Set a property and check it exists
foobar.add("Test Key!")
assert "Test Key!" in foobar
To support multiple servers, just add multiple servers::
from pybloom import BloomdClient
# Create a client to a multiple bloomd servers, default ports
client = BloomdClient(["bloomd1", "bloomd2"])
# Create 4 filters, should be on different machines
for x in xrange(4):
client.create_filter("test%d" % x)
# Show which servers the filters are on by
# specifying the inc_server flag
print client.list_filters(inc_server=True)
# Use the filters
client["test0"].add("Hi there!")
client["test1"].add("ZING!")
client["test2"].add("Chuck Testa!")
client["test3"].add("Not cool, bro.")
Using pipelining is straightforward as well::
from pybloom import BloomdClient
# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])
# Get or create the foobar filter
pipe = client.create_filter("pipe").pipeline()
# Chain multiple add commands
results = pipe.add("foo").add("bar").add("baz").execute()
assert results[0]
assert results[1]
assert results[2]
=========
Pybloom provides a Python client library to interface with
bloomd servers. The library supports multiple bloomd servers,
and automatically handles filter discovery and sharding.
Features
--------
* Provides a simple API for using bloomd
* Allows for using multiple bloomd servers
- Auto-discovers filter locations
- Balance the creation of new filters
- Explicitly name the location to make filters
* Command pipelining to reduce latency
Install
-------
Download and install from source:
python setup.py install
Example
------
Using pybloom is very simple, and is similar to using native sets::
from pybloom import BloomdClient
# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])
# Get or create the foobar filter
foobar = client.create_filter("foobar")
# Set a property and check it exists
foobar.add("Test Key!")
assert "Test Key!" in foobar
To support multiple servers, just add multiple servers::
from pybloom import BloomdClient
# Create a client to a multiple bloomd servers, default ports
client = BloomdClient(["bloomd1", "bloomd2"])
# Create 4 filters, should be on different machines
for x in xrange(4):
client.create_filter("test%d" % x)
# Show which servers the filters are on by
# specifying the inc_server flag
print client.list_filters(inc_server=True)
# Use the filters
client["test0"].add("Hi there!")
client["test1"].add("ZING!")
client["test2"].add("Chuck Testa!")
client["test3"].add("Not cool, bro.")
Using pipelining is straightforward as well::
from pybloom import BloomdClient
# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])
# Get or create the foobar filter
pipe = client.create_filter("pipe").pipeline()
# Chain multiple add commands
results = pipe.add("foo").add("bar").add("baz").execute()
assert results[0]
assert results[1]
assert results[2]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file bloom-python-driver-0.4.8.tar.gz
.
File metadata
- Download URL: bloom-python-driver-0.4.8.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3ffd9f9e8070906c9f5d314d22107fdc5f9853da867cfd4e3532681843338a7 |
|
MD5 | 3f2f8254ea7931a0910db57cd99aef66 |
|
BLAKE2b-256 | b6d6e91be242a40ee5f58a2f873057a2cd4c91cea0118a3e4a4ef215d87ac872 |