Skip to main content

Blosc data compressor

Project description

A Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

https://www.blosc.org/python-blosc/python-blosc.html

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.9 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

https://blosc.org/python-blosc/python-blosc.html

Also, some examples are available on python-blosc wiki page:

https://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZSTD. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ export USE_SYSTEM_BLOSC=1                 # or "set USE_SYSTEM_BLOSC=1" on Windows
$ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location
$ python setup.py build_ext --inplace

Using flags:

$ python setup.py build_ext --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ python -m blosc.test  (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licensed under a 3-Clause BSD license. A copy of the python-blosc license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.com/g/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.11.2.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

blosc-1.11.2-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc-1.11.2-cp312-cp312-win32.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86

blosc-1.11.2-cp312-cp312-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

blosc-1.11.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

blosc-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc-1.11.2-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc-1.11.2-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc-1.11.2-cp311-cp311-win32.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86

blosc-1.11.2-cp311-cp311-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

blosc-1.11.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

blosc-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc-1.11.2-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc-1.11.2-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc-1.11.2-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

blosc-1.11.2-cp310-cp310-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

blosc-1.11.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

blosc-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc-1.11.2-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc-1.11.2-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.11.2-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.11.2-cp39-cp39-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

blosc-1.11.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

blosc-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc-1.11.2-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc-1.11.2.tar.gz.

File metadata

  • Download URL: blosc-1.11.2.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2.tar.gz
Algorithm Hash digest
SHA256 ac5e7c1bfc1c7232b900be94cddb5ffcf9ea49f313c8ae98a7ca0dd87b872bf4
MD5 61728dc826aae9b7aaa4c63b839c4371
BLAKE2b-256 0b11c684c09ac3f4e75691bfc7827dd23743bcf30b35751697278c614332700e

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f6cbafa32ce0435f755d8e785e836df21f4e061a92bb0966ce49c36f19e8f57c
MD5 4b0a762475a19e8d4ccdc2d57b330716
BLAKE2b-256 6de57d708485c4698f8da4a8b15dbeedb4181301fc51ee0b253005a33808effb

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc-1.11.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9d52f7b24ef99d18c6bfa6b766b69ea0488a3947ed2e6136c85952e866140ca4
MD5 09558ce4b7fec2fea7ffb697c12252c8
BLAKE2b-256 0b65800174d48904ab344d72bfe527b622444fe11e52590ec6a24163dcf73444

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c84d4509d1a22e9cd8c8a48d86310cb808949ea06cde143b62042ba8bd3156b9
MD5 a28eb741832301766fe39095666e1830
BLAKE2b-256 ef9d8319e2c48e81d11248c7631df49d8d0dbf347c20a3899919a32341f44a44

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f94643c27e96141615d345a37f4ff6ab048340c7e5ebaced4e8c205bbb12b15f
MD5 3c8eb0bcbac914e30d3af18c7b43a9fa
BLAKE2b-256 77d9b221c460d86b66dc7ad639378764034f5f254d03b45fd87c3cf787091407

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24985254eb33199473e2960e56cea7c6642cd45635ba4944a3a0fafca75b3e23
MD5 9a92abd79e3ad17e38c6687af6d51a8a
BLAKE2b-256 7abd2d1cb4d1f04a8060678f57a784cba0ff381c685f6df87b272ec496c860ac

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1be3ae38210d7a68594328d7704202ebd326829668f378e8ef00d2e34dbee086
MD5 c098cb88cd0945618a146f87f72a86ed
BLAKE2b-256 04f8a846c5e795ed8c14123b5aeec7a29503be5ca5ea725a0f63748a640e51d3

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a49e6d7361c28dd13e3101864ec582f926f1a0412d4d35866fede92538564f63
MD5 a5fa2b73fbb3f1cbd1abe8a0a7c7dd38
BLAKE2b-256 d78a416d2ad12489f831cdea55aa280100a94df41ad8320594d9a094b2248bd0

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 587d0bae031e894af6e1f9b3f3d31bc63e958ea5d3d11f4e77d0c167a89294f2
MD5 1bd49db43d6e8b011b010910fc6517bb
BLAKE2b-256 a0da5a43f76d7becf9b4beafe8a4bea8760ea1598e91dd2e24dd60409aa14d59

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 907e59c69f7dfc4151ad912aae0948f0aa6d072ae05785dcc1c5b94f65999df7
MD5 a737edc3246d0052781248e96394fbf7
BLAKE2b-256 2f633db535d924a7dd776826f10305feebd828b8fcb7cc0425299ee4c0d99603

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc-1.11.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 888f1cb535f55fce4490d9d7cc6037faa6c324050ce5f51b7459789d79a87d89
MD5 d4b0da2f4cae8eef9e3f08e3343d58d6
BLAKE2b-256 873d90f7aff0dd2af6fceef7df73dee725c67aaa829e48d2736ba2ab9dfbb6e0

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9c554d9e4e434ed14b8e298ac5a49166e9df13e28a94b38174540cf4e417909a
MD5 8da10ec6731ab1efb6b0fb4c186b9229
BLAKE2b-256 78857b9e637103a80a2277ad95cd4c49094d4473e2dc445269135f243f576727

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 649803ca91da799d7e367bc3c5535a649502c53e7c21168d811ae16ec45bc0b4
MD5 d5fdd3ff7b8c7c9cf62d61b6fc9fb707
BLAKE2b-256 b96cc33a5660d9f11c2b1c46178af20d813db9548a9e628ddb9d83504a967c3b

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff82238e7f028b3f8a3745210f165067ea60f8b693f082a77d740c971acf3813
MD5 19484c47faaebd8f5ce408babad174a7
BLAKE2b-256 15b13e17b5c6cba02eafbb5622b087454356dee6d6abf6d1b5fb0258b2a9f22b

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b1199acf412662a3040156194c0b8204defe75b982ac93cc02aea2285221c633
MD5 100a203acf0e75123ba04b51497475bd
BLAKE2b-256 509515127a626811d477c6c469d43cb5cf2972299aeaf4804991875ff06ca2ab

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 add97363136192343fbebbf5660abbf90438e45436a4d7764b66b5baa7d8efb5
MD5 cc6d7a1ce96c554d76b60d50225a77e1
BLAKE2b-256 266593370408733e5d7f864a416befd233d37e8e4aa5674413c33ba79cf1ce2d

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c7505e61049456b587c513a78432810c99944b0045842053b9a76348ae29848
MD5 32ca2ab74a4b43341c87f70185c4b9d3
BLAKE2b-256 1220a8ae5f21ca36195a231683a4d1b2710bec5895d7b98653d5f4f76368da67

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad2dc8284733bb5d7fd62cab825f25d6e1d2ef846dcb60183afdd43fb3db726a
MD5 3799b68e8e9f4e7e50bcb651113687cb
BLAKE2b-256 31f2061a854a3ad9a704abf78661a5e5eedc02a57b31b75cbab0f6a363da99d2

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc-1.11.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4e153c9986ee033cb0d8e61bc059ad2fd093d9eef70e0240ee5947bdf23ea728
MD5 534d1f15a8669ef397aa3a23b237c197
BLAKE2b-256 0dc10dfc168b5a9d0d5e0328bf4d40179f938d4ae62e73bf2e1a76cf5c1b8ef7

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c5db40ac4e8439c2cd68bfbd98db0959187034c74aeecfdaba5554adb9e8f455
MD5 bcec565022b3f6e38c56fb64cac671aa
BLAKE2b-256 952c77ffccd3fedbf2540066f0f54333697f821ccb17d4348429970463c3a35e

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 41112ded3371711a689573711f77b240ac35a5f2108d884c3ef20fb471977bdb
MD5 f909847f86db1ecac4be9901487ea143
BLAKE2b-256 3353ffcf13b80c4d2f09212ab294f1493c2de70ce28f2cca22cc49470a6cad5d

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d00dd1050fbda9b6dbabbe054bd006c2b9eb03561bf59827eed7927f146dbb2
MD5 334a0baae4fc47eacf55e965f2c3f2c7
BLAKE2b-256 983f8c077963422269b49429f91386376f300ba9a11cbbfc443c8c4e51fa87f4

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dec0681560552cbca4aa168678cccbde00b8f4d0c471383dccc008023caac7f3
MD5 e88b21db9b1d460f66e0cfa292b8a05c
BLAKE2b-256 154239211b8b4772e8cc1a6b5e92411db47ab0eec245b4f3507a502f658f15bd

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8be1f0f62b4d86e3c463d2748d242981669318c3fb5708f62fb628799656b68e
MD5 af606fece2e21e68dd1efe53c1f54c51
BLAKE2b-256 2f7209fd3affbd14f4ada8a1c1303fca3f16013f2639b58d9f3859b167e2b411

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c72a23463d8bf7aebcd4c5d590aea2041acbc23a48ee80b24701e8cf5a8fb15
MD5 3db056f2b88a2448400609e50f03f4be
BLAKE2b-256 8b31b686531b2177d29ca6dc508ac9b299b8a913644aee0939a165c3943dff20

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e643ff14fdc1209838c4e5e66f1dd838c8dcf4c91168fa9f37dbb54a3dc2eedd
MD5 04fd71c4f43251e8697194aeee610d05
BLAKE2b-256 40c6a3a3ba445badeff175a1b82bd793fde0a5373c1204e81ac2e2f3efd86f4c

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.11.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for blosc-1.11.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cf46b686be123af5d240da91a3caf023f61b58486cb878c42e75eda77c519dd3
MD5 e1dd1da8beb6ab61fd09955f57b62c7b
BLAKE2b-256 870608e77e2193d386e36f6de15ddcbe983058f98953e3e71cf434c7f25e16ef

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 57c31e9d5cfaa32477cef04f3581464292319ba2e432be0d3aaaff16d684e4ea
MD5 59f1ea389ad62504e2878f8c79748d1d
BLAKE2b-256 69fdef75705958f4648518df13d642ce18114078d545d8859ef1af47b0fdfade

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f577dcce3bf86f806d0abf1ae48fb17ee5be207121edbe22f74235aaae6f1741
MD5 74fb38ad52b6959f916b7eb6d9afa57f
BLAKE2b-256 ab007627d3ef80a8dc5bcd3c4377d9fb5b645ad652a52bbcce35364b8a745338

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15d0c214c6be07e2990aa5624c4a4dd85564752df70efa2aadfe9362d81bef29
MD5 864a7c2505db09dd7a254b63c2df0626
BLAKE2b-256 ef05b4cafdc0b062ea7c6493f3e419087fe003bb71afe6317a44a3093aba10b1

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25171ebd1bb223844a2c78993399edf5aeea0cd02a4a41fc300dd7919bea17cb
MD5 752a103db77bee36df1b2721aff2b8bd
BLAKE2b-256 7fa9b270c232c102ecd747af5d89f0671fddc0a408fe406f944db1a95d99bd04

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 167ab728ad2c8487603817bd50210953f0cf3ad7fe9e54320721cf61d8847ac2
MD5 2c3f88d3fdb8490e098d3e56c67a6db3
BLAKE2b-256 9706188bc14a4e7e25a1d4cfda8bf9ea9a681a404c593c01141396a1746a9098

See more details on using hashes here.

File details

Details for the file blosc-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f799144079f6a30dd3894fda870c91bfeb38854fbca19287340f865f590b253
MD5 4f5c52fdc956a932d2c5a54003b9727b
BLAKE2b-256 1e45126129662dd73392999b3711a2142d990c7e3fe08f176b919bc79bf3e262

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page