Skip to main content

Python library for retrieving BLS datasets

Project description

bls-datasets

Making datasets easily accessible to python scripts.

Integrated datasets include:

For looking up BLS data via series-id lookups, please checkout OliverSherouse's library: BLS

Usage

>>> from bls_datasets import oes, qcew

# OES example:

>>> df_oes = oes.get_data(year=2017)
>>> df_oes.columns
Index(['OCC_CODE', 'OCC_TITLE', 'OCC_GROUP', 'TOT_EMP', 'EMP_PRSE', 'H_MEAN',
       'A_MEAN', 'MEAN_PRSE', 'H_PCT10', 'H_PCT25', 'H_MEDIAN', 'H_PCT75',
       'H_PCT90', 'A_PCT10', 'A_PCT25', 'A_MEDIAN', 'A_PCT75', 'A_PCT90',
       'ANNUAL', 'HOURLY'],
      dtype='object')

# Which occupation had the highest total employment in 2017?

>>> detailed = df_oes[df_oes.OCC_GROUP == 'detailed']
>>> detailed[detailed.TOT_EMP == detailed.TOT_EMP.max()].OCC_TITLE
772    Retail Salespersons

# QCEW example:
>>> df_qcew = qcew.get_data('industry', rtype='dataframe', year='2017',
...             qtr='1', industry='10')
>>> df_qcew.columns
Index(['area_fips', 'own_code', 'industry_code', 'agglvl_code', 'size_code',
       'year', 'qtr', 'disclosure_code', 'qtrly_estabs', 'month1_emplvl',
       'month2_emplvl', 'month3_emplvl', 'total_qtrly_wages',
       'taxable_qtrly_wages', 'qtrly_contributions', 'avg_wkly_wage',
       'lq_disclosure_code', 'lq_qtrly_estabs', 'lq_month1_emplvl',
       'lq_month2_emplvl', 'lq_month3_emplvl', 'lq_total_qtrly_wages',
       'lq_taxable_qtrly_wages', 'lq_qtrly_contributions', 'lq_avg_wkly_wage',
       'oty_disclosure_code', 'oty_qtrly_estabs_chg',
       'oty_qtrly_estabs_pct_chg', 'oty_month1_emplvl_chg',
       'oty_month1_emplvl_pct_chg', 'oty_month2_emplvl_chg',
       'oty_month2_emplvl_pct_chg', 'oty_month3_emplvl_chg',
       'oty_month3_emplvl_pct_chg', 'oty_total_qtrly_wages_chg',
       'oty_total_qtrly_wages_pct_chg', 'oty_taxable_qtrly_wages_chg',
       'oty_taxable_qtrly_wages_pct_chg', 'oty_qtrly_contributions_chg',
       'oty_qtrly_contributions_pct_chg', 'oty_avg_wkly_wage_chg',
       'oty_avg_wkly_wage_pct_chg'],
      dtype='object')

# What were the average weekly earnings in Fresno County for 2017 Q1?

# FIPS code, area title
# 06019, Fresno County, California

>>> fresno = df_qcew[(df_qcew.own_code == 0) & (df_qcew.area_fips == '06019')]
>>> fresno.avg_wkly_wage.values[0]
803


Installation

pip install bls-datasets

Documentation

Documentation coming soon. Please reference the docstrings in the source code for now.

Notes on datasets

OES

OES consists of occupational statistics, primarily: employment, age, and salary. To learn more about this survey, you can visit this link.

Note that due to idiosyncrasies in earlier OES datasets, this package only allows data access starting in 2014. Earlier files are available, although, they are given different naming patterns, are often broken into multiple excel spreadsheets due to size constraints of older excel version, and they do not always consist of the same datacuts. I will not integrate any earlier years, unless I see it necessary, or receive enough user requests.

QCEW

QCEW consists of employer reported occupational statistics. Data can be cut/sliced by area, industry or company size. To learn more about this survey, you can visit this link

Common gotchas with QCEW data:

  • Datatypes are not always what you expect them to be. Reference the following tables when performing dataframe operations
  • Due to employer confidentiality, some of the figures may be unavailable. This is especially true when making more granular data cuts. Do check the disclosure_code columns for this.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bls_datasets-0.0.9.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

bls_datasets-0.0.9-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file bls_datasets-0.0.9.tar.gz.

File metadata

  • Download URL: bls_datasets-0.0.9.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4

File hashes

Hashes for bls_datasets-0.0.9.tar.gz
Algorithm Hash digest
SHA256 2ed8bdc09180d61cea49322ac153fd708d6c2a9bcffe2ff2e85c31a72f3e4071
MD5 7a1d4a6f9cd9875dc88ed57f385218b0
BLAKE2b-256 47d8f22315571eecc5a9c9ea9173da62b1bbd513b6f4451fac651fe4d478afcb

See more details on using hashes here.

File details

Details for the file bls_datasets-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: bls_datasets-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4

File hashes

Hashes for bls_datasets-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 1333e7d0b6b1ed296fa3af39bb7abcfa209feacb1ecb2bcbf9edba58f2d1a7a4
MD5 2455d8f775ca5f8a953ee7d4b278a6b6
BLAKE2b-256 56c361e48cb5373a904a791595ceebc8ea757f0d0cf57d3a7e262912ff244088

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page