Skip to main content

Python package for the Best Linear Unbiased Estimate (BLUE) method

Project description

A description of the BLUE method as implemented in this package can be found in

  • L. Lyons, D. Gibaut and P. Clifford, “How to Combine Correlated Estimates of a Single Physical Quantity”, Nucl. Instrum. Meth. A 270 (1988) 110, doi:10.1016/0168-9002(88)90018-6.

  • A. Valassi, “Combining correlated measurements of several different physical quantities”, Nucl. Instrum. Meth. A 500 (2003) 391, doi:10.1016/S0168-9002(03)00329-2.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blue_combine-0.1.dev1.tar.gz (2.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

blue_combine-0.1.dev1-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file blue_combine-0.1.dev1.tar.gz.

File metadata

File hashes

Hashes for blue_combine-0.1.dev1.tar.gz
Algorithm Hash digest
SHA256 c716d4b34f96b94b86dba2431f0fe2cf0b1a89143f7d9e244e0484e0b00c7e45
MD5 d11fe02c36b6ff27307b89d6a659eb98
BLAKE2b-256 e6256033f3d1dab93c03ce979d0978f026730f14ecca0ee9116aaff74e5b92cf

See more details on using hashes here.

File details

Details for the file blue_combine-0.1.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for blue_combine-0.1.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 907a10924d5ca55ade15fff0a1ff3bb03955c965473baac2261e42c947337fbe
MD5 1e9dcea5b53ca38164685cead17f3234
BLAKE2b-256 3168a9ecb31541cb60544d1cd1188333a99db775947658e9cd72c77644e532d1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page